Skip to main content
Log in

Effect of the Mutual Arrangement of Substituents in an Aminobenzoic Acid Molecule on the Analytical Performance of a Label-Free Electrochemical Immunosensor with a Covalent-Immobilized Receptor Layer

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We studied the effect of the mutual arrangement of substituents in an aminobenzoic acid molecule on the analytical characteristics of the determination of bacteria Staphylococcus aureus using a label-free electrochemical immunosensor. An immunosensor based on m-aminobenzoic acid demonstrated the best performance. This is apparently due to the best combination of the density of the coating formed by electrochemical deposition and the availability of carboxyl functional groups for carbodiimide cross-linking with an immunoreceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bush, L.M. and Vazquez-Pertejo, M.T., www.merckmanuals.com/professional/infectious-diseases/gram-positive-cocci/staphylococcal-infections. Accessed May 26, 2020.

  2. Moreillon, P., Que, Y.-A., and Glauser, M.P., in Principles and Practice of Infectious Disease, Mandell, G.L., Bennett, J.E., and Dolin, R., Eds., Philadelphia: Churchill Livingstone, 2005, 6th ed., p. 2701.

    Google Scholar 

  3. Vandepitte, J., Engbaek, K., Piot, P., and Heuck, C.C., Basic Laboratory Procedures in Clinical Bacteriology, World Health Organization, 1991.

    Google Scholar 

  4. Struelens, M.J., Hawkey, P.M., French, G.L., Witte, W., and Tacconelli, E., Clin. Microbiol. Infect., 2009, vol. 15, no. 2, p. 112.

    Article  CAS  Google Scholar 

  5. Li, L., Wang, C., Nie, Y., Yao, B., and Hu, H., TrAC, Trends Anal. Chem., 2020, vol. 127, 115905.

    Article  CAS  Google Scholar 

  6. Rubab, M., Shahbaz, H.M., Olaimat, A.N., and Oh, D.-H., Biosens. Bioelectron., 2018, vol. 105, p. 49.

    Article  CAS  Google Scholar 

  7. Kozitsina, A.N., Doctoral (Chem.) Dissertation, Yekaterinburg: Ural. Fed. Univ., 2018.

  8. Riu, J. and Giussani, B., TrAC, Trends Anal. Chem., 2020, vol. 126, 115863.

    Article  CAS  Google Scholar 

  9. Kokkinos, C., Economou, A., and Prodromidis, M.I., TrAC, Trends Anal. Chem., 2016, vol 79, p. 88.

    Article  CAS  Google Scholar 

  10. Evtyugin, G.A., Budnikov, G.K., and Stoikova, E.E., Osnovy biosensoriki (Fundamentals of Biosensorics), Kazan: Kazan. Gos. Univ., 2007.

  11. Kozitsina, A., Svalova, T., Malysheva, N., Glazyrina, Y., Matern, A., and Rusinov, V., Anal. Lett., 2017, vol. 50, no. 6, p. 924.

    Article  CAS  Google Scholar 

  12. Hermanson, G.T., Bioconjugate Technique, Rockford, IL: Pierce Biotechnology, 2013, p. 259.

    Google Scholar 

  13. Laribi, A., Allegra, S., Souiri, M., Mzoughi, R., Othmane, A., and Girardot, F., Talanta, 2020, vol. 215, 120904.

    Article  CAS  Google Scholar 

  14. Haji-Hashemi, H., Norouzi, P., Safarnejad, M.R., and Ganjali, M.R., Sens. Actuators, B, 2017, vol. 244, p. 211.

    Article  CAS  Google Scholar 

  15. Mattson, G., Conklin, E., Desai, S., Nielander, G., Savage, M.D., and Morgensen, S., Mol. Biol. Rep., 1993, vol. 17, no. 3, p. 167.

    Article  CAS  Google Scholar 

  16. Bélanger, D. and Pinson, J., Chem. Soc. Rev., 2011, vol. 40, no. 7, p. 3995.

    Article  Google Scholar 

  17. Cao, C., Zhang, Y., Jiang, C., Qi, M., and Liu, G., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 6, p. 5031.

    Article  CAS  Google Scholar 

  18. Shul, G., Parent, R., Mosqueda, H.A., and Belanger, D., ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 4, p. 1468.

    Article  CAS  Google Scholar 

  19. Yáñez-Sedeño, P., González-Cortés, A., Campuzano, S., and Pingarrón, J.M., Sensors, 2019, vol. 19, no. 10, p. 2379.

    Article  Google Scholar 

  20. Menanteau, T., Levillain, E., Downard, A.J., and Breton, T., Phys. Chem. Chem. Phys., 2015, vol. 17, no. 19, p. 13137.

    Article  CAS  Google Scholar 

  21. Nowicka, A.M., Fau, M., Rapecki, T., and Donten, M., Electrochim. Acta, 2014, vol. 140, p. 65.

    Article  CAS  Google Scholar 

  22. Svalova, T.S., Malysheva, N.N., Bubekova, A.K., Saigushkina, A.A., Medvedeva, M.V., and Kozitsina, A.N., J. Anal. Chem., 2020, vol. 75, no. 2, p. 254.

    Article  CAS  Google Scholar 

  23. Karyakin, A., Ulasova, E., Vagin, M., and Karyakina, E., Sensor, 2002, vol. 24, p. 1.

    Google Scholar 

  24. Svalova, T.S., Saigushkina, A.A., Medvedeva, M.V., Malysheva, N.N., Zhdanovskikh, V.O., Kozitsin, I.V., and Kozitsina, A.N., Electroanalysis, 2020, vol. 32, no. 4, p. 698.

    Article  CAS  Google Scholar 

  25. Adenie, A., Chehimi, M.M., Gallardo, I., Pinson, J., and Vila, N., Langmuir, 2004, vol. 20, no. 19, p. 8243.

    Article  Google Scholar 

  26. Yang, G., Liu, B., and Dong, S., J. Electroanal. Chem., 2005, vol. 585, no. 2, p. 301.

    Article  CAS  Google Scholar 

  27. Randriamahazaka, H. and Ghilane, J., Electroanalysis, 2016, vol. 28, no. 1, p. 13.

    Article  CAS  Google Scholar 

  28. Vanossi, D., Benassi, R., Parenti, F., Tassinari, F., Giovanardi, R., Florini, N., De Renzi, V., Arnaud, G., and Fontanesi, C., Electrochim. Acta, 2012, vol. 75, p. 49.

    Article  CAS  Google Scholar 

  29. Yang, G., Shen, Y., Wang, M., Chen, H., Liu, B., and Dong, S., Talanta, 2006, vol. 68, no. 3, p. 741.

    Article  CAS  Google Scholar 

  30. Guerrero, S., Agüí, L., Yáñez-Sedeño, P., and Pingarrón, J.M., Electroanalysis, 2018, vol. 30, no. 7, p. 1327.

    Article  CAS  Google Scholar 

  31. Liu, J., Cheng, L., Liu, B., and Dong, S., Langmuir, 2000, vol. 16, no. 19, p. 7471.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Council for Grants of the President of the Russian Federation (grant MK no. 567.2020.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Svalova.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svalova, T.S., Zaidullina, R.A., Malysheva, N.N. et al. Effect of the Mutual Arrangement of Substituents in an Aminobenzoic Acid Molecule on the Analytical Performance of a Label-Free Electrochemical Immunosensor with a Covalent-Immobilized Receptor Layer. J Anal Chem 76, 503–509 (2021). https://doi.org/10.1134/S106193482102012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482102012X

Keywords:

Navigation