Skip to main content
Log in

Laser Desorption/Ionization of Low-Molecular-Weight Lignin Oligomers

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The study compares the efficiency of laser desorption/ionization (LDI) of six dimeric compounds, corresponding to the most important types of bonds between monomeric structural fragments of lignin macromolecules, on three types of different stainless steel target plates. It was found that ground steel target plates demonstrate the best results because of the uniform crystallization of analytes and good surface coverage. The most important ionization mechanisms for lignin oligomers with conjugated structures and increased acidity, along with protonation (cationization), involve the formation of molecular ions due to direct photoionization. For all of the studied compounds, partial in-source decay was observed, the contribution of which became significant at high laser fluence. The LDI method was successfully used to obtain mass spectra of low-molecular-weight products of the depolymerization of technical lignins. It was shown that the use of hybrid mass spectrometers with a quadrupole ion trap leads to an increase in the percentage of signals of protonated molecules in the mass spectra of lignin depolymerization products because of the occurrence of side ion-molecular reactions in the plume and ion trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Vanholme, R., Demedts, B., Morreel, K., et al., Plant Physiol., 2010, vol. 153, no. 3, p. 895.

    Article  CAS  Google Scholar 

  2. Karak, N., in Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, Pacheco-Torgal, F., Ivanov, V., Karak, N., et al., Eds., Cambridge: Woodhead, 2016, p. 333.

  3. Abhilash, M. and Thomas, D., in Biopolymer Composites in Electronics, Sadasivuni, K.K., Cabibihan, J.J., Ponnamma, D., et al., Eds., Amsterdam: Elsevier, 2016, p. 405.

    Google Scholar 

  4. Boerjan, W., Ralph, J., and Baucher, M., Annu. Rev. Plant Biol., 2003, vol. 54, p. 519.

    Article  CAS  Google Scholar 

  5. Heitner, C., Dimmel, D., and Schmidt, J., Lignin and Lignans: Advances in Chemistry, Boca Raton, FL: CRC, 2010.

    Google Scholar 

  6. Albishi, T., Mikhael, A., Shahidi, F., et al., Rapid Commun. Mass. Spectrom., 2019, vol. 33, no. 6, p. 539.

    Article  CAS  Google Scholar 

  7. Chen, C.L., in Methods in Lignin Chemistry, Lin, S.Y., and Dence, C.W., Eds., Berlin: Springer; 1992, p. 301.

    Google Scholar 

  8. Lundquist, K., Appl. Polym. Symp., 1976, vol. 28, p. 1393.

    CAS  Google Scholar 

  9. Bayerbach, R. and Meier, D., J. Anal. Appl. Pyrolysis, 2009, vol. 85, nos. 1–2, p. 98.

    Article  CAS  Google Scholar 

  10. Dimmel, D.R. and Boon, J.J., J. Wood Chem. Technol., 2001, vol. 21, no. 1, p. 19.

    Article  Google Scholar 

  11. Del Rio, J.C., Rencoret, J., Prinsen, P., et al., J. Agric. Food Chem., 2012, vol. 60, no. 23, p. 5922.

    Article  CAS  Google Scholar 

  12. Del Rio, J.C., Gutierrez, A., Romero, J., et al., J. Anal. Appl. Pyrolysis, 2001, vols. 58–59, p. 425.

    Article  Google Scholar 

  13. Wen, J.L., Sun, S.L., Xue, B.L., et al., Materials, 2013, vol. 6, no. 1, p. 359.

    Article  Google Scholar 

  14. Morreel, K., Kim, H., Lu, F., et al., Anal. Chem., 2010, vol. 82, no. 19, p. 8095.

    Article  CAS  Google Scholar 

  15. Kosyakov, D.S., Ul’yanovskii, N.V., Anikeenko, E.A., et al., Rapid Commun. Mass Spectrom., 2016, vol. 30, no. 19, p. 2099.

    Article  CAS  Google Scholar 

  16. Banoub, J., Delmas, G.H., Joly, N., et al., J. Mass Spectrom., 2015, vol. 50, no. 1, p. 5.

    Article  CAS  Google Scholar 

  17. Nielen, M.W.F., Mass Spectrom. Rev., 1999, vol. 18, no. 5, p. 309.

    Article  CAS  Google Scholar 

  18. Yoshioka, K., Ando, D., and Watanabe, T., Phytochem. Anal., 2011, vol. 23, no. 3, p. 248.

    Article  Google Scholar 

  19. Kosyakov, D.S., Ul’yanovskii, N.V., Sorokina, E.A., et al., J. Anal. Chem., 2014, vol. 69, no. 14, p. 1344.

    Article  CAS  Google Scholar 

  20. Kosyakov, D.S., Anikeenko, E.A., Ul’yanovskii, N.V., et al., Anal. Bioanal. Chem., 2018, vol. 410, no. 28, p. 7429.

    Article  CAS  Google Scholar 

  21. Bayerbach, R., Nguyen, V.D., Schurr, U., et al., J. Anal. Appl. Pyrolysis, 2006, vol. 77, no. 2, p. 95.

    Article  CAS  Google Scholar 

  22. Kosyakov, D.S., Ipatova, E.V., Krutov, S.M., et al., J. Anal. Chem., 2017, vol. 72, no. 14, p. 1396.

    Article  CAS  Google Scholar 

  23. Ivakhnov, A.D., Shavrina, I.S., Kosyakov, D.S., et al., Russ. J. Appl. Chem., 2020, vol. 93, no. 1, p. 99.

    Article  CAS  Google Scholar 

  24. Kosyakov, D.S., Sorokina, E.A., Ul’yanovskii, N.V., et al., J. Anal. Chem., 2016, vol. 71, no. 13, p. 1221.

    Article  CAS  Google Scholar 

  25. Srzić, D., Martinović, S., Paša Tolic, L.J., et al., Rapid Commun. Mass Spectrom., 1995, vol. 9, no. 3, p. 245.

    Article  Google Scholar 

  26. Zakis, G.F., Sintez model’nykh soedinenii lignina: Metodiki (Synthesis of Model Compounds of Lignin: Procedures), Riga: Zinatne, 1980, p. 182.

  27. Kolářová, L., Prokeš, L., Kučera, L., et al., J. Am. Soc. Mass Spectrom., 2017, vol. 28, no. 3, p. 419.

    Article  Google Scholar 

  28. Sládková, K., Houška, J., and Havel, J., Rapid Commun. Mass Spectrom., 2009, vol. 23, no. 19, p. 3114.

    Article  Google Scholar 

  29. López-Nicolás, J.M. and García-Carmona, F., J. Agric. Food Chem., 2008, vol. 56, no. 17, p. 7600.

    Article  Google Scholar 

  30. Ragnar, M., Lindgren, C.T., and Nilvebrant, N.-O., J. Wood Chem. Technol., 2000, vol. 20, no. 3, p. 277.

    Article  CAS  Google Scholar 

  31. Kosyakov, D.S., Khoroshev, O.Yu., Anikeenko, E.A., et al., J. Anal. Chem., 2019, vol. 74, no. 14, p. 1390.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using instrumentation of the “Arktika” Core Facility Center of the Northern (Arctic) Federal University.

Funding

This work was supported by the Russian Science Foundation, project no. 18-73-10138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ul’yanovskii.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by E. Rykova

ADDITIONAL INFORMATION

E.A. Anikeenko.: ORCID ID 0000000211711305

N.V. Ul’yanovskii: ORCID ID 0000000347969313

D.S. Kosyakov: ORCID ID 0000000152236857

I.S. Shavrina: ORCID ID 0000000332723185

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikeenko, E.A., Ul’yanovskii, N.V., Shavrina, I.S. et al. Laser Desorption/Ionization of Low-Molecular-Weight Lignin Oligomers. J Anal Chem 75, 1814–1824 (2020). https://doi.org/10.1134/S1061934820140038

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820140038

Keywords:

Navigation