Skip to main content
Log in

Pyridine and Methylpyridines: Calculations of the Structure, Proton Affinity, Gas-Phase Basicity, and Mobility of Protonated Molecules and Proton-Bound Dimers

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Accurate calculations of the structure and properties of analytes and their ions are of great interest to the theory and practice of mass spectrometry, ion mobility spectrometry, and related methods. In this work, using accurate quantum chemical methods, we computed the structure of neutral and protonated pyridine, 2-methyl-, 4-methyl-, 2,4-dimethyl-, 2,6-dimethyl-, and 2,4,6-trimethylpyridine molecules and also of proton-bound dimers of pyridine and 2,4-dimethylpyridine. Two stable conformers of the 2,4-dimethylpyridine proton-bound dimer are found. An accurate and economical method is proposed for calculating proton affinity and gas-phase basicity with the calculation error close to the experimental one. The values of proton affinity and gas-phase basicity for 2,4,6-trimethylpyridine are computed. Reduced mobilities of protonated molecules and proton-bound dimers are calculated by the trajectory method in different versions. A calculation version is proposed that allows mobility computation with the error close to the experimental one and adequately reproduces small differences in the mobility of isomers. The versatility of the chosen B3PW91−D3BJ/def2−TZVP method of the density functional theory with the inclusion of dispersion correction is shown. The method (in combination with B2GP−PLYP−D3BJ/def2−TZVPPD calculations) ensures accurate calculations of the molecular structure, proton affinity, and gas-phase basicity, and also charges on atoms for computing ion mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Lebedev, A.T., Mass-spektrometria v organicheskoi khimii (Mass Spectrometry in Organic Chemistry), Moscow: Tekhnosfera, 2015.

  2. Mata, F., Quintana, M.J., and Sørensen, G.O., J. Mol. Struct., 1977, vol. 42, p. 1.

    Article  CAS  Google Scholar 

  3. Wörmke, S., Brendel, K., Andersen, U., et al., Mol. Phys., 2004, vol. 102, nos. 14–15, p. 1625.

    Article  CAS  Google Scholar 

  4. Srinivasan, R., Feenstra, J.S., Park, S.T., et al., Science, 2005, vol. 307, no. 5709, p. 558.

    Article  CAS  PubMed  Google Scholar 

  5. Császár, A.G., Demaison, J., and Rudolph, H.D., J. Phys. Chem. A, 2015, vol. 119, no. 9, p. 1731.

    Article  PubMed  CAS  Google Scholar 

  6. Sunner, J., Nicol, G., and Kebarle, P., Anal. Chem., 1988, vol. 60, no. 13, p. 1300.

    Article  CAS  Google Scholar 

  7. Eiceman, G.A., and Karpas, Z., Ion Mobility Spectrometry, Boca Raton, FL: CRC, 2005.

    Book  Google Scholar 

  8. Nishikaze, T., and Takayama, M., Rapid Commun. Mass Spectrom., 2006, vol. 20, no. 3, p. 376.

    Article  CAS  PubMed  Google Scholar 

  9. Grechnikov, A.A., Borodkov, A.S., Alimpiev, S.S., et al., J. Anal. Chem., 2013, vol. 68, no. 1, p. 19.

    Article  CAS  Google Scholar 

  10. Hunter, E.P.L., and Lias, S.G., J. Phys. Chem. Ref. Data, 1998, vol. 27, no. 3, p. 413.

    Article  CAS  Google Scholar 

  11. Gurinov, A.A., Denisov, G.S., Borissova, A.O., et al., J. Phys. Chem. A, 2017, vol. 121, no. 45, p. 8697.

    Article  CAS  PubMed  Google Scholar 

  12. Karpas, Z., Anal. Chem., 1989, vol. 61, no. 7, p. 684.

    Article  CAS  Google Scholar 

  13. Karpas, Z., Berant, Z., and Shahal, O., J. Am. Chem. Soc., 1989, vol. 111, no. 16, p. 6015.

    Article  CAS  Google Scholar 

  14. Ghira, G.-B., Raţiu, I.-A., and Bocoş-Binţinţan, V., Environ. Eng. Manage. J., 2013, vol. 12, no. 2, p. 251.

    Article  CAS  Google Scholar 

  15. Fernández-Maestre, R., Int. J. Mass Spectrom. Ion Processes, 2017, vol. 421, p. 8.

    Article  CAS  Google Scholar 

  16. Laakia, J., Adamov, A., Jussila, M., et al., J. Am. Soc. Mass Spectrom., 2010, vol. 21, no. 9, p. 1565.

    Article  CAS  PubMed  Google Scholar 

  17. Ewing, R.G., Eiceman, G.A., Harden, C.S., et al., Int. J. Mass Spectrom. Ion Processes, 2006, vols. 255–256, p. 76.

    Article  CAS  Google Scholar 

  18. Thomas, C.L.P., Rezgui, N.D., Kanu, A.B., et al., Int. J. Ion Mobility Spectrom., 2002, vol. 5, no. 1, p. 31–36.

    Google Scholar 

  19. Kanu, A.B., Hill, H.H., Jr., Gribb, M.M., et al., J. Environ. Monit., 2007, vol. 9, p. 51.

    Article  CAS  PubMed  Google Scholar 

  20. Kaur-Atwal, G., O’Connor, G., Aksenov, A.A., et al., Int. J. Ion Mobility Spectrom., 2009, vol. 12, no. 1, p. 1.

    Article  CAS  Google Scholar 

  21. Granovsky, A.A., Firefly, version 8.0.1. http://classic. chem.msu.su/gran/firefly/index.html. Accessed July 15, 2014.

  22. Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, no. 7, p. 1456.

    Article  CAS  PubMed  Google Scholar 

  23. Karton, A., Tarnopolsky, A., Lamère, J.-F., et al., J. Phys. Chem. A, 2008, vol. 112, no. 50, p. 12868.

    Article  CAS  PubMed  Google Scholar 

  24. Catalán, J., Mó, O., Pérez, P., et al., J. Am. Chem. Soc., 1979, vol. 101, no. 22, p. 6520.

    Article  Google Scholar 

  25. Hillebrand, C., Klessinger, M., Eckert-Maksic, M., et al., J. Phys. Chem., 1996, vol. 100, no. 23, p. 9698.

    Article  CAS  Google Scholar 

  26. Nguyen, V.Q., and Turecek, F., J. Mass Spectrom., 1997, vol. 32, no. 1, p. 55.

    Article  CAS  PubMed  Google Scholar 

  27. Golec, B., Das, P., Bahou, M., et al., J. Phys. Chem. A, 2013, vol. 117, no. 50, p. 13680.

    Article  CAS  PubMed  Google Scholar 

  28. Boys, S.F. and Bernardi, F., Mol. Phys., 1970, vol. 19, no. 4, p. 553.

    Article  CAS  Google Scholar 

  29. Xantheas, S.S., J. Chem. Phys., 1996, vol. 104, no. 21, p. 8821.

    Article  CAS  Google Scholar 

  30. Lewars, E.G., Computational Chemistry, Dordrecht: Springer, 2011, 2nd ed.

    Book  Google Scholar 

  31. Larriba, C. and Hogan, C.J., J. Phys. Chem. A, 2013, vol. 117, no. 19, p. 3887.

    Article  CAS  PubMed  Google Scholar 

  32. Larriba, C. and Hogan, C.J., J. Comp. Phys., 2013, vol. 251, p. 344.

    Article  CAS  Google Scholar 

  33. Ouyang, H., Larriba-Andaluz, C., Oberreit, D., et al., J. Am. Soc. Mass Spectrom., 2013, vol. 24, no. 12, p. 1833.

    Article  CAS  PubMed  Google Scholar 

  34. Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., et al., J. Phys. Chem., 1996, vol. 100, no. 40, p. 16082.

    Article  CAS  Google Scholar 

  35. Takaya, K., Kaneko, T., Tanuma, H., et al., Int. J. Ion Mobility Spectrom., 2016, vol. 19, no. 4, p. 227.

    Article  CAS  Google Scholar 

  36. Lebedev, A.V., J. Anal. Chem., 2019, vol. 74, no. 13, p. 1325.

    Article  CAS  Google Scholar 

  37. Wu, T., Derrick, J., Nahin, M., et al., J. Chem. Phys., 2018, vol. 148, no. 7, 074102.

    Article  PubMed  CAS  Google Scholar 

  38. Bader, R.F.W. and Matta, C.F., J. Phys. Chem. A, 2004, vol. 108, no. 40, p. 8385.

    Article  CAS  Google Scholar 

  39. Keith, T.A., AIMAll, version 15.09.27, 2015.

  40. Kanu, A.B. and Hill, H.H., Jr., Talanta, 2007, vol. 73, no. 4, p. 692.

    Article  CAS  PubMed  Google Scholar 

  41. Karpas, Z. and Berant, Z., J. Phys. Chem., 1989, vol. 93, no. 8, p. 3021.

    Article  CAS  Google Scholar 

  42. Stone, J.A., Int. J. Ion Mobility Spectrom., 2002, vol. 5, no. 2, p. 19.

    CAS  Google Scholar 

  43. Mäkinen, M., Sillanpää, M., Viitanen, A.-K., et al., Talanta, 2011, vol. 84, no. 1, p. 116.

    Article  PubMed  CAS  Google Scholar 

  44. Campuzano, I., Bush, M.F., Robinson, C.V., et al., Anal. Chem., 2012, vol. 84, no. 2, p. 1026.

    Article  CAS  PubMed  Google Scholar 

  45. Pápai, I. and Jáncsó, G., J. Phys. Chem. A, 2000, vol. 104, no. 10, p. 2132.

    Article  CAS  Google Scholar 

  46. Roithová, J. and Exner, O., J. Phys. Org. Chem., 2001, vol. 14, no. 11, p. 752.

    Article  Google Scholar 

  47. Ruusuvuori, K., Kurten, T., Ortega, I.K., et al., Atmos. Chem. Phys., 2013, vol. 13, no. 20, p. 10397.

    Article  CAS  Google Scholar 

  48. Lapouge, C. and Cavagnat, D., J. Phys. Chem. A, 1998, vol. 102, no. 43, p. 8393.

    Article  CAS  Google Scholar 

  49. Chen, P.C. and Chang, F.M., Int. J. Quantum Chem., 2000, vol. 77, no. 4, p. 772.

    Article  CAS  Google Scholar 

  50. East, A.L.L., Liu, H., Lima, E.C., et al., J. Chem. Phys., 2000, vol. 112, no. 1, p. 167.

    Article  CAS  Google Scholar 

  51. Borst, D.R. and Pratt, D.W., J. Chem. Phys., 2000, vol. 113, no. 9, p. 3658.

    Article  CAS  Google Scholar 

  52. Gardner, A.M., Green, A.M., Tame-Reyes, V.M., et al., J. Chem. Phys., 2013, vol. 138, no. 13, 134303.

    Article  PubMed  CAS  Google Scholar 

  53. Del Bene, J.E., J. Am. Chem. Soc., 1977, vol. 99, no. 11, p. 3617.

    Article  CAS  Google Scholar 

  54. Ajito, K., Takahashi, M., and Ito, M., Chem. Phys. Lett., 1989, vol. 158, nos. 3–4, p. 193.

    Article  CAS  Google Scholar 

  55. Makowski, M., Sadowski, R., Augustin-Nowacka, D., et al., J. Phys. Chem. A, 2001, vol. 105, no. 27, p. 6743.

    Article  CAS  Google Scholar 

  56. Blanco, F., O’Donovan, D.H., Alkorta, I., et al., Struct. Chem., 2008, vol. 19, no. 2, p. 339.

    Article  CAS  Google Scholar 

  57. Bouchoux, G., Mass Spectrom. Rev., 2007, vol. 26, no. 25, p. 775.

    Article  CAS  PubMed  Google Scholar 

  58. Ishida, H., Z. Naturforsch., A: Phys. Sci., 2000, vol. 55, nos. 9–10, p. 769.

    CAS  Google Scholar 

  59. Zeroka, D. and Jensen, J.O., J. Mol. Struct.: THEOCHEM, 1998, vol. 425, no. 3, p. 181.

    Article  CAS  Google Scholar 

  60. Zeroka, D., Jensen, J.O., and Samuels, A.C., J. Mol. Struct.: THEOCHEM, 1999, vol. 465, nos. 2–3, p. 119.

    Article  Google Scholar 

  61. Holroyd, L.F. and van Mourik, T., Chem. Phys. Lett., 2007, vol. 442, nos. 1–3, p. 42–46.

    Article  CAS  Google Scholar 

  62. Chan, B., Del Bene, J.E., and Radom, L., Mol. Phys., 2009, vol. 107, nos. 8–12, p. 1095.

    Article  CAS  Google Scholar 

  63. Melikova, S.M., Rutkowski, K.S., Gurinov, A.A., et al., J. Mol. Struct., 2012, vol. 1018, p. 39.

    Article  CAS  Google Scholar 

  64. Attah, I.K., Platt, S.P., Meot-Ner (Mautner), M., et al., J. Chem. Phys., 2014, vol. 140, no. 11, p. 114313-1.

    Article  CAS  Google Scholar 

  65. Ebrahimi, A., Habibi-Khorasani, S.M., and Jahantab, M., Comput. Theor. Chem., 2011, vol. 966, nos. 1–3, p. 31.

    Article  CAS  Google Scholar 

  66. Pham-Tran, N.N., Bouchoux, G., Delaere, D., et al., J. Phys. Chem. A, 2005, vol. 109, no. 12, p. 2957.

    Article  CAS  PubMed  Google Scholar 

  67. Hauck, B.C., Harden, C.S., and McHugh, V.M., Int. J. Ion Mobility Spectrom., 2018, vol. 21, no. 4, p. 105.

    Article  CAS  Google Scholar 

  68. Meot-Ner (Mautner), M., Chem. Rev., 2005, vol. 105, no. 1, p. 213.

    Article  CAS  Google Scholar 

  69. Reed, A.E., Weinhold, F., Curtiss, L.A., et al., J. Chem. Phys., 1986, vol. 84, no. 10, p. 5687.

    Article  CAS  Google Scholar 

Download references

Funding

This work had no sponsor support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lebedev.

Ethics declarations

The author declares no conflict of interest.

Additional information

Translated by E. Rykova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.V. Pyridine and Methylpyridines: Calculations of the Structure, Proton Affinity, Gas-Phase Basicity, and Mobility of Protonated Molecules and Proton-Bound Dimers. J Anal Chem 75, 1719–1730 (2020). https://doi.org/10.1134/S1061934820130079

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820130079

Keywords:

Navigation