Skip to main content
Log in

Determination of Carotenoids of Tomato Fruits of Different Colors

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A method for the determination of the composition of carotenoids of tomato fruits of different colors is proposed using a combination of spectrophotometry and chromatography. An explanation of the elution order of mono-cis-isomers of lycopene under the conditions of reversed-phase chromatography on traditional “monomeric” reversed C18-phases is proposed for the first time. It was found that, for prolycopene, (7Z, 9Z, 7'Z, 9'Z)-lycopene, which is responsible for the orange color of fruits, there is an almost imperceptible transition in normal examination in the vibronic structure of the electronic absorption spectrum with the lowest energy, λmax(1) = 486.2 nm. The main carotenoids of tomato fruits of different colors were determined: trans-lycopene and its cis-isomers for fruits of red and pink colors, protolycopene and other carotenes preceding its biosynthesis for fruits of orange color, and the carotenoid composition of yellow tomatoes significantly differing from that of tomatoes of first two colors by a considerable accumulation of lutein. For the quantitative assessment of the concentration of carotenoids with different chromophores, a calculation system ensuring the determination of the contribution of each of the components of complex mixtures was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Korneeva, A.V., Ross. Med. Zh. Klin. Oftal’mol., 2019, vol. 19, p. 54.

    Google Scholar 

  2. Tan, B.L. and Norhaizan, M.E., Molecules, 2019, vol. 24, p. 1801.

    Article  CAS  Google Scholar 

  3. Olaizola, M., Ch. 13, in Marine Nutraceuticals and Functional Foods, Barrow, C. and Shahidi, F., Eds., Boca Raton: CRC, 2007, p. 332.

    Google Scholar 

  4. Davinelli, S., Nielsen, M.E., and Scapagnini, G., Nutrition, 2018, vol. 10, p. 522.

    Google Scholar 

  5. Story, E.N., Kopec, R.E., Schwartz, S.J., and Harris, G.K., Ann. Rev. Food Sci. Technol., 2010, vol. 1, p. 189.

    Article  CAS  Google Scholar 

  6. Clinton, S.K., Nutr. Rev., 1998, vol. 56, no. 2, p. 35.

    Article  CAS  Google Scholar 

  7. Belokurova, E.S. and Pankina, I.A., Tekh. Tekhnol. Pishch. Proizvod., 2018, vol. 48, no. 2, p. 162.

    Google Scholar 

  8. Burri, B.J., Chapman, M.H., Neidlinger, T.R., Seo, J.S., and Ishida, B.K., Int. J. Food Sci. Nutr., 2009, vol. 60, no. 1 (suppl.), p. 1.

    Article  CAS  Google Scholar 

  9. Unlu, N.Z., Bohn, T., Francis, D., Clinton, S.K., and Scwartz, S.J., J. Agric. Food Chem., 2007, vol. 55, p. 1597.

    Article  CAS  Google Scholar 

  10. Zechmeister, L., Lerosen, A.L., Went, F.W., and Pauling, L., Proc. Natl. Acad. Sci. U. S. A., 1941, vol. 27, p. 468.

    Article  CAS  Google Scholar 

  11. Clough, J.M. and Pattenden, G., J. Chem. Soc., Perkin Trans. 1, 1983, p. 3011.

  12. Johjima, T., J. Jpn. Soc. Hortic. Sci., 1993, vol. 62, p. 567.

    Article  CAS  Google Scholar 

  13. Daood, H.G., Bencze, G., Palotás, G., Pék, Z., Sidikov, A., and Helyes, L., J. Chromatogr. Sci., 2014, vol. 52, p. 985.

    Article  CAS  Google Scholar 

  14. Isaacson, T., Ohad, I., Beyer, P., and Hirschberg, J., Plant Physiol., 2004, vol. 136, p. 4246.

    Article  CAS  Google Scholar 

  15. Yoo, H.J., Park, W.J., Lee, G.-M., Oh, C.-S., Yeam, I., Won, D.-C., Kim, C.K., and Lee, J.M., Molecules, 2017, vol. 22, p. 764.

    Article  Google Scholar 

  16. Hengartner, U., Bernhard, K., Meyer, K., Englert, G., and Glinz, E., Helv. Chim. Acta, 1992, vol. 75, p. 1848.

    Article  CAS  Google Scholar 

  17. Hirota, S., Watanabe, K., Arinobu, T., and Tsuyuki, H., Food Sci. Technol. Int., 1996, vol. 2, p. 150.

    CAS  Google Scholar 

  18. Takehara, M., Nishimura, M., Kuwa, T., Inoue, Y., Kitamura, C., Kumagai, T., and Honda, M., J. Agric. Food Chem., 2014, vol. 62, p. 264.

    Article  CAS  Google Scholar 

  19. Amorim, A.G.N., Souza, J.M.T., Santos, R.C., Gullón, B., Oliveira, A., Santos, L.F.A., Virgino, A.L.E., Mafud, A.C., Petrilli, H.M., Mascarenhas, Y.P., Delerue-Matos, C., Pintado, M.E., and Leite, J.R.S.A., Eur. J. Lipid Sci. Technol., 2018, vol. 120, no. 3.

  20. Stah, W., Sundquist, A.R., Hanusch, M., Schwarz, W., and Sies, H., Clin. Chem., 1993, vol. 39, p. 810.

    Article  Google Scholar 

  21. Deineka, V.I., Anh Van Nguyen, and Deineka, L.A., Russ. J. Phys. Chem., 2019, vol. 93, no. 12, p. 2490.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Deineka.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deineka, V.I., Burzhinskaya, T.G., Deineka, L.A. et al. Determination of Carotenoids of Tomato Fruits of Different Colors. J Anal Chem 76, 196–203 (2021). https://doi.org/10.1134/S1061934820120060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820120060

Keywords:

Navigation