Abstract
Ant colony optimization (ACO) is a population-based metaheuristic algorithm that can be used to find approximate solutions to difficult optimization problems. The solution construction process is stochastic and is biased by a pheromone model which is used to probabilistically sample the search space. ACO is a relatively novel technique for solving hard combinatorial optimization problems. The inspiring source of ACO is the foraging behavior of real ants. Since wavelength selection is a strategy used for improving the quality of calibration methods, we investigated simultaneous spectrophotometric determination of two hazardous materials, namely, furaldehydes 2-furaldehyde (F) and 5-hydroxymethyl-2-furaldehyde (HMF), using ant colony optimization-partial least squares (ACO−PLS) regression. Predictive abilities of ACO in wavelength selection process were examined for spectrophotometric determination of these pollutants. Furthermore, ACO in combination with PLS was compared with other regression methods, such as classical least squares regression, principle component regression, PLS, and genetic algorithm−PLS, for F and HMF simultaneous determination. ACO−PLS showed superiority over other methods regarding the prediction ability of the resulted model and providing useful information about the chemical system. The proposed method was successfully applied for the determination of such hazardous materials as furaldehydes in oil refining wastewaters.





Similar content being viewed by others
REFERENCES
Spano, N., Ciulu, M., Floris, I., Panzanelli, A., Pilo, M.I., Piu, P.C., Salis, S., and Sanna, G., Talanta, 2009, vol. 78, p. 310.
Borghei, S.M. and Hosseini, S.N., Chem. Eng. J., 2008, vol. 139, p. 482.
Aladwani, H.A. and Riazi, M.R., Chem. Eng. Res. Des., 2005, vol. 38, p. 160.
Jones, D.S.L. and Pujado, P.R., in Handbook of Petroleum Processing, Amsterdam: Springer, 2014, p. 611.
Mortier, R.M. and Orszulik, S.T., Chemistry and Technology of Lubricants, New York: Springer, 2017.
Coto, B., van Grieken, R., Peña, J.L., and Espada, J.J., Chem. Eng. Sci., 2006, vol. 61, p. 4381.
Coto, B., van Grieken, R., Peña, J.L., and Espada, J.J., Chem. Eng. Sci., 2006, vol. 61, p. 8028.
Ferrer, E., Alegria, A., Farre, R., Abellan, P., and Romero, F., Food Chem., 2005, vol. 89, p. 639.
Contreras-Calderón, J., Guerra-Hernández, E., and García-Villanova, B., Eur. Food Res. Technol., 2008, vol. 227, p. 117.
Colonna, W.J., Samaraweera, U., Clarke, M.A., Cleary, M., Godshall, M.A., and White, J.S., Kirk Othmer Encyclopedia of Chemical Technology, New York: Wiley, 2015.
O’Brien, J., in Proc. of the 6th Int. Symp. on the Maillard Reaction, London: Woodhead, 1997, p. 464.
Henares, J.A.R., Andrade, C.D., and Morales, F.J., Food Chem., 2009, vol. 114, p. 93.
Andrade, C.D., Seiquer, I., Navarro, M.P., and Morales, F.J., Mol. Nutr. Food Res., 2007, vol. 51, p. 341.
Zappalà, M., Fallico, B., Arena, E., and Verzera, A., Food Control, 2005, vol. 16, p. 273.
Viñas, P., Campillo, N., Hernández Cordoba, M., and Candela, M.E., Food Chem., 1992, vol. 44, p. 67.
Ameur, L.A., Rega, B., Giampaoli, P., Trystram, G., and Aragon, I.B., Food Chem., 2008, vol. 111, p. 758.
Batista de Aquino, F.W., Rodrigues, S., Ferreira do Nascimento, R., and Soares Casimiro, A.R., Food Chem., 2006, vol. 8, p. 569.
Schultheiss, J., Jensen, D., and Galensa, R., J. Chromatogr. A, 2000, vol. 880, p. 233.
Beránek, J. and Kubátová, A., J. Chromatogr. A, 2008, vol. 1209, p. 44.
Shang, Y., Yang, L., Guo, Z.J., and Yan, Z., in Proc. of the 2001 IEEE 7th Int. Conf. “Assessing Aging of Large Transformers by Furfural Investigation,” Darmstadt, 2001, p. 272.
Kalal, M., Khayatzadeh, M., Ghanadi, and M. Chaloosi, J. Liq. Chromatogr. Relat. Technol., 2007, vol. 30, p. 2081.
Serra, M. and Venini, P., in Proc. Sixth World Congress of Structural and Multidisciplinary Optimization, Brazil, 2005.
Shamsipur, M., Zare-Shahabadi, V., Hemmateenejad, B., and Akhond, M., J. Chemom., 2006, vol. 20, p. 146.
XLSTAT: The leading data analysis and statistical solution for microsoft excel, New York: Addinsoft.
Thomas, E.V. and Haaland, D.M., Anal. Chem., 1990, vol. 62, p. 1091.
Hemmateenejad, B., Akhond, M., Miri, R., and Shamsipur, M., J. Chem. Inf. Comput. Sci., 2003, vol. 43, p. 1328.
Zare-Shahabadi, V., Shamsipur, M., Hemmatenejad, B., and Akhond, M., Anal. Lett., 2010, vol. 43, p. 687.
Stone, M., J. R. Stat. Soc., 1974, vol. 36, p. 111.
Wold, S., Technometrics, 1978, vol. 20, p. 397.
Arcos, M.J., Cruz Ortiz, M., Villahoz, B., and Sarabia, L.A., Anal. Chim. Acta, 1997, vol. 339, p. 63.
Lanteri, S., Chem. Intell. Lab. Syst., 1992, vol. 15, p. 159.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Ali Akbar Miran Beigi A Reliable and Rapid Method for Simultaneous Determination of Furfural and Hydroxymethyl Furfural in Oil Refinery Wastewaters by Ant Colony/Partial Least-Squares Analysis. J Anal Chem 75, 1486–1496 (2020). https://doi.org/10.1134/S1061934820110039
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1061934820110039


