A Liquid Membrane Mercury Selective Electrode Based on 2-(N-pipyridino Methyl)-1-Cyano Cyclohexanol as a Novel Neutral Carrier


2-(N-pipyridino methyl)-1-cyano cyclohexanol was synthesized, characterized and used as an ionophore in construction of polyvinyl chloride (PVC) potentiometric sensor for Hg2+ determination. The best result was obtained with membrane composition of PVC (29%), sodium tetraphenylborate as ionic additive (1%), 2-(N-pipyridino methyl)-1-cyano cyclohexanol (12%) and dibutylphthalate (58%). The designed electrode showed an acceptable Nernstian slope (29.1 mV/decade) for Hg2+ over a wide concentration range from 5 × 10–7 to 1 × 10–2 M with a detection limit of 2.5 × 10–7 M. The potential response was independent from pH in the range of 6.0–9.0 and the sensor response time was relatively short (~25 s). The sensor performance was invariable for at least 6 weeks. Electrode selectivity was evaluated by matched potential method. Finally, the proposed sensor was used as an indicator electrode in potentiometric titration of Hg2+ with ethylenediaminetetraacetic acid and in direct determination of mercury(II) in aqueous samples with admissible accuracy and high reproducibility.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Wang, J., Feng, X., Anderson, C.W.N., Xing, Y., and Shang, L., J. Hazard. Mater., 2012, vol. 221, p. 1. https://doi.org/10.1016/j.jhazmat.2012.04.035

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Crowe, W., Allsopp, P.J., Watson, G.E., Magee, P.J., Strain, J., Armstrong, D.J., Ball, E., and McSorley, E.M., Autoimmun. Rev., 2017, vol. 16, p. 72. https://doi.org/10.1016/j.autrev.2016.09.020

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Leopold, K., Foulkes, M., and Worsfold, P., Anal. Chim. Acta, 2010, vol. 663, p. 127. https://doi.org/10.1016/j.aca.2010.01.048

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Pigatto, P.D., Costa, A., and Guzzi, G., Sci. Total Environ., 2017, vol. 613, p. 1579. https://doi.org/10.1016/j.scitotenv.2017.09.036

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Gupta, V.K., Singh, A.K., Al Khayat, M., and Gupta, B., Anal. Chim. Acta, 2007, vol. 590, p. 81.

    CAS  Article  Google Scholar 

  6. 6

    Ha, E. and Basu, N., Bose-O’Reilly, S., Dorea, J.G., McSorley, E., Sakamoto, M., and Man Chan, H., Environ. Res., 2017, vol. 152, p. 419. https://doi.org/10.1016/j.envres.2016.06.042

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Bjørklund, G., Dadar, M., Mutter, J., and Aaseth, J., Environ. Res., 2017, vol. 159, p. 545. https://doi.org/10.1016/j.envres.2017.08.051

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Nagpal, N., Bettiol, S.S., Isham, A., Hoang, H., and Crocombe, L.A., Saf. Health Work, 2017, vol. 8, p. 10. https://doi.org/10.1016/j.shaw.2016.05.007

    Article  Google Scholar 

  9. 9

    Berlin, M., Zalups, R.K., and Fowler, B.A., in Handbook on the Toxicology of Metals, ch. 46, San Diego: Academic, 2015, 4th ed.

    Google Scholar 

  10. 10

    Gupta, V.K., Sethi, B., Sharma, R.A., Agarwal, S., and Bharti, A., J. Mol. Liq., 2013, vol. 177, p. 114. https://doi.org/10.1016/j.molliq.2012.10.008

    CAS  Article  Google Scholar 

  11. 11

    Kern, J.K., Geier, D.A., Sykes, L.K., Haley, B.E., and Geier, M.R., J. Trace Elem. Med. Biol., 2016, vol. 37, p. 8. https://doi.org/10.1016/j.jtemb.2016.06.002

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Hajiaghababaei, L., Sharafi, A., Suzangarzadeh, S., and Faridbod, F., Anal. Bioanal. Electrochem., 2013, vol. 5, p. 481.

    Google Scholar 

  13. 13

    Bakhtiarzadeh, F. and Ghani, S.A., J. Electroanal. Chem., 2008, vol. 624, p. 139. https://doi.org/10.1016/j.jelechem.2008.08.007

    CAS  Article  Google Scholar 

  14. 14

    Hajiaghababaei, L., Abutalebyar, B., Darvich, M.R., and Shekoftefar, S., Sens. Lett., 2013, vol. 11, p. 2315.

    CAS  Article  Google Scholar 

  15. 15

    Ganjali, M.R., Hajiaghababaei, L., and Taghvaei-Ganjali, S., Bull. Kor. Chem. Soc., 2004, vol. 25, p. 177.

    CAS  Article  Google Scholar 

  16. 16

    Ganjali, M.R., Norouzi, P., Atrian, A., Faridbod, F., Meghdadi, S., and Giahi, M., Mater. Sci. Eng., C, 2009, vol. 29, p. 205.

    CAS  Article  Google Scholar 

  17. 17

    Cesarino, I., Marino, G., Matos, J.R., and Cavalheiro, E.T.G., Ecl. Quím.SãoPaulo, 2007, vol. 32, p. 29.

    CAS  Google Scholar 

  18. 18

    Ensafi, A.A., Meghdadi, S., and Allafchian, A.R., IEEE Sens. J., 2008, vol. 8, p. 248.

    CAS  Article  Google Scholar 

  19. 19

    Gupta, V.K., Jain, S., and Khurana, U., Electroanalysis, 1997, vol. 9, p. 478.

    CAS  Article  Google Scholar 

  20. 20

    Jain, A.K., Sondhi, S.M., and Sharma, V.K., Electroanalysis, 2000, vol. 12, p. 301.

    CAS  Article  Google Scholar 

  21. 21

    Hajiaghababaei, L., Kazemi, S., and Badiei, A.R., Anal. Bioanal. Electrochem., 2012, vol. 4, p. 246.

    Google Scholar 

  22. 22

    Khan, A. and Paquiza, L., Desalination, 2011, vol. 272, p. 278.

    CAS  Article  Google Scholar 

  23. 23

    Jumal, J., Yamin, B.M., Ahmad, M.A., and Heng, L.Y., APCBEE Procю, 2012, vol. 3, p. 116.

    CAS  Article  Google Scholar 

  24. 24

    Sharifi, A., Hajiaghababaei, L., Suzangarzadeh, S., and Jalali Sarvestan, M.R., Anal. Bioanal. Electrochem., 2017, vol. 9, p. 888.

    CAS  Google Scholar 

  25. 25

    Gupta, V.K., Singh, A.K., Al Khayat, M., and Gupta, B., Anal. Chim. Acta, 2007, vol. 590, p. 81.

    CAS  Article  Google Scholar 

  26. 26

    Mannich, C. and Kroshe, W., Arch. Pharm. Med. Chem., 1912, vol. 250, p. 647. https://doi.org/10.1002/ardp.19122500151

    CAS  Article  Google Scholar 

  27. 27

    Thomas, F., Cummings, S., and Reid Shelton, J., J. Org. Chem., 1960, vol. 25, no. 3, p. 419. https://doi.org/10.1021/jo01073a029

    Article  Google Scholar 

  28. 28

    Cao, X.H. and Xie, B., ARKIVOC, 2013, vol. i, p. 264.

    Google Scholar 

  29. 29

    Hajiaghababaei, L., Zandinejad, S., and Berijani, S., Indian J. Chem., Sect. A, 2016, vol. 55, p. 423.

    Google Scholar 

  30. 30

    Bakker, E., Buhlmann, P., and Pretsch, E., Chem. Rev., 1997, vol. 97, p. 3083.

    CAS  Article  Google Scholar 

  31. 31

    Bakker, E. and Meyerhoff, M.E., Anal. Chim. Acta, 2000, vol. 416, p. 121.

    CAS  Article  Google Scholar 

  32. 32

    Faridbod, F., Khamseh-nejad, M., Ganjali, M.R., Norouzi, P., and Hajiaghababaei, L., Int. J. Electrochem. Sci., 2012, vol. 7, p. 1917.

    CAS  Google Scholar 

  33. 33

    Rosatzin, T., Bakker, E., Suzuki, K., and Simon, W., Anal. Chim. Acta, 1993, vol. 280, p. 197.

    CAS  Article  Google Scholar 

  34. 34

    Telting-Diaz, M. and Bakker, E., Anal. Chem., 2001, vol. 73, p. 5582.

    CAS  Article  Google Scholar 

  35. 35

    Gehrig, P.M., Morf, W.E., and Pretsch, E., Anal. Chim. Acta, 1990, vol. 73, p. 203.

    CAS  Article  Google Scholar 

  36. 36

    Ganjali, M.R., Norouzi, P., and Rezapour, M., in Encyclopedia of Sensors, Potentiometric Ion Sensors, Los Angeles: Am. Sci., 2006, vol. 8, p. 197.

    CAS  Google Scholar 

  37. 37

    Umezawa, Y., Umezawa, K., and Sato, H., Pure. Appl. Chem., 1995, vol. 67, p. 507.

    Article  Google Scholar 

  38. 38

    Zamani, H.A., Ganjali, M.R., Norouzi, P., and Adib, M., Sens. Lett., 2007, vol. 5, p. 522.

    CAS  Article  Google Scholar 

  39. 39

    Javanbakht, M., Ganjali, M.R., Eshghi, H., Sharghi, H., and Shamsipur, M., Electroanalysis, 1999, vol. 11, p. 81.

    CAS  Article  Google Scholar 

  40. 40

    Naushad, Mu., Inamuddin, Rangreez, T.A., and ALOthman, Z.A., J. Electroanal. Chem., 2014, vol. 713, p. 125. https://doi.org/10.1016/j.jelechem.2013.12.002

    CAS  Article  Google Scholar 

  41. 41

    Abbas, I.I., Int. J. Chem., 2012, vol. 4, p. 23. https://doi.org/10.5539/ijc.v4n1p23

    CAS  Article  Google Scholar 

  42. 42

    Hassan, A.Kh., Mod. Chem. Appl., 2013, vol. 1. https://doi.org/10.4172/2329-6798.1000111

  43. 43

    Zhanga, M., Wua, X., Chaia, Y.Q., Yuana, R., and Ye, G.R., J. Chin. Chem. Soc., 2008, vol. 55, p. 1345. https://doi.org/10.1002/jccs.200800202

    Article  Google Scholar 

  44. 44

    Mahajan, R.K., Kaur, I., and Lobana, T.S., Talanta, 2003, vol. 59, p. 101. https://doi.org/10.1016/S0039-9140(02)00473-3

    CAS  Article  PubMed  Google Scholar 

Download references


The author appreciates the Islamic Azad University of Yadegar-e-Imam Khomeini (RAH) Shahre-rey branch Research Council for the patronage of this project.

Author information



Corresponding author

Correspondence to Leila Hajiaghababaei.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamid Reza Rashvand, Hajiaghababaei, L., Darvich, M.R. et al. A Liquid Membrane Mercury Selective Electrode Based on 2-(N-pipyridino Methyl)-1-Cyano Cyclohexanol as a Novel Neutral Carrier. J Anal Chem 75, 1340–1347 (2020). https://doi.org/10.1134/S106193482010010X

Download citation


  • mercury selective electrode
  • liquid membrane
  • 2-(N-pipyridino methyl)-1-cyano cyclohexanol
  • potentiometry