Skip to main content
Log in

Determination of Mercury in Sediments by Slurry Sampling Electrothermal Atomic Absorption Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The concentration of mercury in suspensions of sediments is determined by electrothermal atomic absorption spectrometry (ET-AAS) using a novel chemical modifier (ChM) based on activated carbon treated by iron(II) formate. The efficiency of chemical modifiers based on activated carbon, also modified by Ag(I), Au(III), Pd(II), Co(II), and Ni(II) compounds is studied. The optimum conditions are found for the temperature and time program of the atomizer; they prevent mercury losses at the stage of drying sample suspensions and also exclude spectral interferences at the stage of atomization and measurement of the analytical signals. The minimum characteristic mass of mercury (52 pg) is reached using an iron-containing chemical modifier based on activated carbon. The conditions of ET-AAS analysis using this ChM are tested on certified reference materials of sediments and a sample selected near the sea port of Temryuk (Sea of Azov). The limit of detection found by the 3s-test was 0.05 mg/kg and the relative standard deviation was 5% at the concentration of mercury in the sample 149 mg/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gworek, B., Bemowska-Kałabun, O., Kijeńska, M., and Wrzosek-Jakubowska, J., Water, Air, Soil Pollut., 2016, vol. 227, p. 371.

    Article  Google Scholar 

  2. Horowitz, A.J., A Primer on Sediment-Trace Element Chemistry, Boca Raton, FL: CRC, 1991.

    Book  Google Scholar 

  3. Amde, M., Yin, Y., Zhang, D., and Liu, J., Chem. Speciation Bioavailability, 2016, vol. 28, p. 51.

    Article  CAS  Google Scholar 

  4. Naik, R.M., Agarwal, A., and Prasad, S., Spectrochim. Acta, Part A, 2009, vol. 74, p. 887.

    Article  Google Scholar 

  5. Bansal, N., Vaughan, J., Boullemant, A., and Leong, T., The determination of trace mercury in environmental samples: A review, in Chemeca 2013: Challenging Tomorrow, Barton: ACT, 2013, p. 771.

  6. Wu, P., He, L., Zheng, C., Hou, X., and Stur-geon, R.E., J. Anal. At. Spectrom., 2010, vol. 25, p. 1217.

    Article  CAS  Google Scholar 

  7. Matusiewicz, H. and Sturgeon, R., Spectrochim. Acta, Part B, 1996, vol. 51, p. 377.

    Article  Google Scholar 

  8. Biester, H. and Nehrke, G., Fresenius’ J. Anal. Chem., 1997, vol. 358, p. 446.

    Article  CAS  Google Scholar 

  9. Almeida, I.L.S., Oliveira, M.D.R., Silva, J.B.B., and Coelho, N.M.M., Microchem. J., 2016, vol. 124, p. 326.

    Article  CAS  Google Scholar 

  10. Matusiewicz, H. and Sturgeon, R.E., Appl. Spectrosc. Rev., 2012, vol. 47, p. 41.

    Article  Google Scholar 

  11. Coufal, P. and Kom, J., J. Anal. Chem., 2014, vol. 69, p. 1123.

    Article  Google Scholar 

  12. Clevenger, W.L., Smith, B.W., and Winefordner, J.D., Crit. Rev. Anal. Chem., 1997, vol. 27, p. 1.

    Article  CAS  Google Scholar 

  13. Costa Ferreira, S.L., Miró, M., Galvão Paranhos da Silva, E., Domingues Matos, G., Sanches dos Reis, P., Cardoso Brandao, G., Lopes dos Santos, W.N., Tavares Duarte, A., Goreti Rodrigues Vale, M., and Oliveira Araujo, R.G., Appl. Spectrosc. Rev., 2010, vol. 45, p. 44.

    Article  Google Scholar 

  14. Sardans, J., Montes, F., and Peñuelas, J., Soil Sediment Contam., 2011, vol. 20, p. 447.

    Article  CAS  Google Scholar 

  15. Burylin, M.Yu. and Pupyshev, A.A., J. Anal. Chem., 2017, vol. 72, no. 9, p. 935.

    Article  CAS  Google Scholar 

  16. Bulska, E., Kandler, W., and Hulanicki, A., Spectrochim. Acta, Part B, 1996, vol. 51, p. 1263.

    Article  Google Scholar 

  17. Silva, A.F., Welz, B., and Curtius, A.J., Noble metals as permanent chemical modifiers for the determination of mercury in environmental reference materials, Spectrochim. Acta, vol. 57, nos. 9–10, p. 2031.

  18. López-García, I., Sánchez-Merlos, M., and Hernaández-Córdoba, M., Spectrochim. Acta, Part B, 1997, vol. 52, p. 2085.

    Article  Google Scholar 

  19. Burylin, M.Yu., Malykhin, S.E., and Galai, E.F., J. Anal. Chem., 2015, vol. 70, no. 4, p. 380.

    Google Scholar 

  20. Burylin, M.Yu., Malykhin, S.E., and Galai, E.F., Inorg. Mater., 2016, vol. 52, no. 14, p. 1383.

    Article  CAS  Google Scholar 

  21. Burylin, M.Yu., Temerdashev, Z.A., and Burylin, S.Yu., J. Anal. Chem., 2006, vol. 61, no. 1, p. 37.

    Article  CAS  Google Scholar 

  22. Burylin, M.Yu., Temerdashev, Z.A., Pupyshev, A.A., Kaunova, A.A., and Obogrelova, S.A., J. Appl. Spectrosc., 2006, vol. 73, no. 5, p. 760.

    Article  CAS  Google Scholar 

  23. ISO 11466:1995. Soil Quality: Extraction of Trace Elements in Aqua Regia, 1995. https://www.iso.org/standard/19418.html. Accessed February 24, 2019.

  24. Bermejo-Barrera, P., Moreda-Piñeiro, J., Moreda-Piñeiro, A., and Bermejo-Barrera, A., Anal. Chim. Acta, 1994, vol. 296, p. 181.

    Article  CAS  Google Scholar 

  25. Cal-Prieto, M.J., Felipe-Sotelo, M., Carlosena, A., Andrade, J.M., López-Mahía, P., Muniategui, S., and Prada, D., Talanta, 2002, vol. 56, p. 1.

    Article  CAS  Google Scholar 

  26. Karadjova, I., Mandjukov, P., Tsakovsky, S., Stratis, J.A., and Zachariadis, G.A., J. Anal. At. Spectrom., 1995, vol. 10, p. 1065.

    Article  CAS  Google Scholar 

  27. Zelinková, H., Červenka, R., and Komárek, J., Stabilizing agents for calibration in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry, Sci. World J., 2012, vol. 2012, 439 875. https://doi.org/10.1100/2012/439875

    Article  CAS  Google Scholar 

  28. L’vov, B.V., Nikolaev, V.G., Norman, E.A., Polzik, L.K., and Mojica, M., Spectrochim. Acta, Part B, 1986, vol. 418, no. 1978, p. 1043.

Download references

ACKNOWLEDGMENTS

This work was performed using scientific equipment of “Ecological and Analytical Center” Core Facility Center of the Kuban State University, unique identifier RFMEFI59317X0008.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-03-00181_a) and by the Ministry of Education and Science of the Russian Federation (contract no. 4.2612.2017/PCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Burylin.

Additional information

Translated by E. Rykova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burylin, M.Y., Romanovskiy, K.A., Temerdashev, Z.A. et al. Determination of Mercury in Sediments by Slurry Sampling Electrothermal Atomic Absorption Spectrometry. J Anal Chem 74, 1184–1191 (2019). https://doi.org/10.1134/S1061934819120037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934819120037

Keywords:

Navigation