Skip to main content
Log in

Kinetic Spectrophotometric Method for 4-nitrophenol Determination in Drinking Water

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes a rapid, highly sensitive and simple kinetic spectrophotometric method for determination of p-nitrophenol (p-NP) based on its activating effect on sulfanilic acid oxidation by hydrogen peroxide in basic media in the presence of Co2+ as catalyst. Coloration of sulfanilic acid is used to monitor the reaction spectrophotometrically at 368 nm. p-Nitrophenol can be determined in the ranges of 40‒200 and 200‒400 ng/mL under optimal conditions. The detection limit of the method according to 3σ criteria is 8 ng/mL. The RSD is 4.8‒0.8% for concentration interval 40‒200 ng/mL. The kinetic parameters of the reaction are reported, and the rate equations are suggested. The developed procedure was successfully applied to the rapid determination of p-NP in water samples using solid phase extraction for phenol preconcentration and removing interferences. The HPLC method was used as comparative method to verify results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Goi, A. and Trapido, M., Chemosphere, 2002, vol. 46, no. 6, p. 913.

    Article  CAS  PubMed  Google Scholar 

  2. Fall National Pesticide Survey: 4-Nitrophenol, US Environmental Protection Agency, Office of Water, Office of Pesticides and Toxic Substances, Washington, DC: US EPA, 1990.

  3. Castilho, M., Domingues, R., Alpendurada. M. F., and Barceló, D., Anal. Chim. Acta, 1997, vol. 353, no. 1, p. 133.

    Article  Google Scholar 

  4. Moctezuma, E., Leyva, E., Palestino, G., and de Lasa, H., J. Photochem. Photobiol., A, 2007, vol. 186, no. 1, p. 71.

    Article  CAS  Google Scholar 

  5. Alber, M., Böhm, H.B., Brodesser, J., Feltes, J., Levsen, K., and Schöler, H.F., Fresenius’ Z. Anal. Chem., 1989, vol. 334, no. 6, p. 540.

    Article  CAS  Google Scholar 

  6. Zhang, Y., Yong, H., Wensheng, C., and Xueguang, S., Anal. Methods, 2011, vol. 3, p. 703.

    Article  CAS  Google Scholar 

  7. Toral, M.I., Richter, P., Cavieres, M., and González, W., Environ. Monit. Assess, 1999, vol. 54, no. 2, p. 191.

    Article  CAS  Google Scholar 

  8. Kang, C., Wang, Y., Li, R., Du, Y., Li, J., Zhang, B., Zhou, L., and Du, Y., Microchem. J., 2000, vol. 64, no. 2, p. 161.

    Article  CAS  Google Scholar 

  9. Lin, X., Chen, Y., and Li, S., Anal. Methods, 2013, vol. 5, no. 22, p. 6480.

    Article  CAS  Google Scholar 

  10. Zhang, W. and Danielson, N.D., Anal. Chim. Acta, 2003, vol. 493, no. 2, p. 167.

    Article  CAS  Google Scholar 

  11. Wang, S.P. and Chen, H.J., J. Chromatogr. A, 2002, vol. 979, nos. 1–2, p. 439.

    Article  CAS  PubMed  Google Scholar 

  12. Brega, A., Prandini, P., Amaglio, C., and Pafuni, E., J. Chromatogr. A, 1990, vol. 535, p. 313.

    Article  Google Scholar 

  13. Elbarbry, F., Wilby, K., and Alcorn, J., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2006, vol. 834, nos. 1–2, p. 199.

    Article  CAS  Google Scholar 

  14. Almasi, A., Fischer, E., and Perjesi, P., J. Biochem. Biophys. Methods, 2006, vol. 69, nos. 1–2, p. 43.

    Article  CAS  PubMed  Google Scholar 

  15. Opeolu, B.O., Fatoki, O.S., and Odendaal, J., Int. J. Phys. Sci., 2010, vol. 5, no. 5, p. 576.

    CAS  Google Scholar 

  16. Wissiak, R. and Rosenberg, E., J. Chromatogr. A, 2002, vol. 963, nos. 1–2, p. 149.

    Article  Google Scholar 

  17. Guo, X., Wang, Z., and Zhou, S., Talanta, 2004, vol. 64, no. 1, p. 135.

    Article  CAS  PubMed  Google Scholar 

  18. Garbellini, G.S., Salazar-Banda, G.R., and Avaca, L.A., J. Braz. Chem. Soc., 2007, vol. 18, no. 6, p. 1095.

    Article  CAS  Google Scholar 

  19. Mulchandani, P., Hangarter, C.M., Lei, Y., Chen, W., and Mulchandani, A., Biosens. Bioelectron., 2005, vol. 21, no. 3, p. 523.

    Article  CAS  PubMed  Google Scholar 

  20. Fisher, J., Vanourkova, L., Danhel, A., Vyskocil, V., Cizek, K., Barek, J., Peckova, K., Josypchuk, B., and Navratil, T., Int. J. Electrochem. Sci., 2007, vol. 2, no. 3, p. 226.

    Google Scholar 

  21. Bebeselea, A., Manea, F., Burtica, G., Nagy, L., and Nagy, G., Chem. Bull. “Politeh.” Univ. Timisoara, 2008, vol. 53, no. 67, p. 34.

    Google Scholar 

  22. Deng, P., Xu, Z., Feng, Y., and Li, J., Sens. Actuators, B, 2012, vol. 168, no. 1, p. 381.

    Article  CAS  Google Scholar 

  23. Zhang, T., Lang, Q., Yang, D., Li, L., Zeng, L., Zheng, C., Li, T., Wei, M., and Liu, A., Electrochim. Acta, 2013, vol. 106, p. 127.

    Article  CAS  Google Scholar 

  24. Rounaghi, G., Kakhki, R.M., and Toupkanloo, A.H., Mater. Sci. Eng., C, 2013, vol. 32, no. 2, p. 172.

    Article  CAS  Google Scholar 

  25. Barek, J., Ebertová, H., Mejstřík, V., and Zima, J., Collect. Czech. Chem. Commun., 1994, vol. 59, no. 8, p. 1761.

    Article  CAS  Google Scholar 

  26. Ni, Y., Wang, L., and Kokot, S., Anal. Chim. Acta, 2001, vol. 431, no. 8, p. 101.

    Article  CAS  Google Scholar 

  27. de Cássia Silva Luz, R., Santos Damos, F., Bof de Oliveira, A., Beek, J., and Tatsuo Kubota, L., Talanta, 2004, vol. 64, no. 4, p. 935.

    Article  CAS  PubMed  Google Scholar 

  28. Hu, S.S., Xu, C.L., Wang, G.P., and Cui, D.F., Talanta, 2001, vol. 54, no. 1, p. 115.

    Article  CAS  PubMed  Google Scholar 

  29. Moreira de Oliveira, R., Gonçalves Santos, N., de Almeida Alves, L., Moreira Soares Lima, K.C., Tatsuo Kubota, L., Santos Damos, F., and de Cássia Silva Luz, R., Sens. Actuators, B, 2015, vol. 221, p. 740.

    Article  CAS  Google Scholar 

  30. Lawrence, N.S., Pagels, M., Meredith, A., Jones, T.G.J., Hall, C.E., Pickles, C.S.J., Godfried, H.P., Banks, C.E., Compton, R.G., and Jiang, L., Talanta, 2006, vol. 69, no. 4, p. 829.

    Article  CAS  PubMed  Google Scholar 

  31. Cordero-Rando, M.D., Barea-Zamora, M., Barberá-Salvador, J.M., Naranjo-Rodríges, I., Muñoz-Leyva, J.A., and Hidalgo-Hidalgo de Cisneros, J.L., Microchim. Acta, 1999, vol. 132, no. 1, p. 7.

    Article  Google Scholar 

  32. Muresanu, C., Copolovici, L., and Pogacean, F., Cent. Eur. J. Chem., 2005, vol. 3, no. 4, p. 592.

    CAS  Google Scholar 

  33. Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook on Analytical Chemistry), Moscow: Khimiya, 1989.

  34. Angelova, M., Stoyanova, A., and Alexiev, A., Trakia J. Sci., 2, vol. 6, no. 1, p. 12.

  35. Mottola, H.A., Kinetic Aspects of Analytical Chemistry, New York: Wiley, 1988.

    Google Scholar 

  36. Miller, J.N., Analyst, 1991, vol. 116, no. 1, p. 3.

    Article  CAS  Google Scholar 

  37. Perez-Bendito, D.P. and Silva, M., Kinetic Methods in Analytical Chemistry, Chichester: Ellis Horwood, 1988.

    Google Scholar 

Download references

FUNDING

This research was supported by grant no. 172061 from the Serbian Ministry of Science. The authors are grateful for the financial support provided by this Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. T. Pecev-Marinković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miletić, A.S., Pecev-Marinković, E.T., Grahovac, Z.M. et al. Kinetic Spectrophotometric Method for 4-nitrophenol Determination in Drinking Water. J Anal Chem 74, 521–527 (2019). https://doi.org/10.1134/S1061934819060066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934819060066

Keywords:

Navigation