Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 6, pp 521–527 | Cite as

Kinetic Spectrophotometric Method for 4-nitrophenol Determination in Drinking Water

  • A. S. Miletić
  • E. T. Pecev-MarinkovićEmail author
  • Z. M. Grahovac
  • A. N. Pavlović
  • S. B. Tošić
  • I. D. Rašić Mišić
ARTICLES
  • 49 Downloads

Abstract

This paper describes a rapid, highly sensitive and simple kinetic spectrophotometric method for determination of p-nitrophenol (p-NP) based on its activating effect on sulfanilic acid oxidation by hydrogen peroxide in basic media in the presence of Co2+ as catalyst. Coloration of sulfanilic acid is used to monitor the reaction spectrophotometrically at 368 nm. p-Nitrophenol can be determined in the ranges of 40‒200 and 200‒400 ng/mL under optimal conditions. The detection limit of the method according to 3σ criteria is 8 ng/mL. The RSD is 4.8‒0.8% for concentration interval 40‒200 ng/mL. The kinetic parameters of the reaction are reported, and the rate equations are suggested. The developed procedure was successfully applied to the rapid determination of p-NP in water samples using solid phase extraction for phenol preconcentration and removing interferences. The HPLC method was used as comparative method to verify results.

Keywords:

4-nitrophenol kinetic method HPLC solid phase extraction water analysis 

Notes

FUNDING

This research was supported by grant no. 172061 from the Serbian Ministry of Science. The authors are grateful for the financial support provided by this Ministry.

REFERENCES

  1. 1.
    Goi, A. and Trapido, M., Chemosphere, 2002, vol. 46, no. 6, p. 913.CrossRefGoogle Scholar
  2. 2.
    Fall National Pesticide Survey: 4-Nitrophenol, US Environmental Protection Agency, Office of Water, Office of Pesticides and Toxic Substances, Washington, DC: US EPA, 1990.Google Scholar
  3. 3.
    Castilho, M., Domingues, R., Alpendurada. M. F., and Barceló, D., Anal. Chim. Acta, 1997, vol. 353, no. 1, p. 133.CrossRefGoogle Scholar
  4. 4.
    Moctezuma, E., Leyva, E., Palestino, G., and de Lasa, H., J. Photochem. Photobiol., A, 2007, vol. 186, no. 1, p. 71.CrossRefGoogle Scholar
  5. 5.
    Alber, M., Böhm, H.B., Brodesser, J., Feltes, J., Levsen, K., and Schöler, H.F., Fresenius’ Z. Anal. Chem., 1989, vol. 334, no. 6, p. 540.CrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Yong, H., Wensheng, C., and Xueguang, S., Anal. Methods, 2011, vol. 3, p. 703.CrossRefGoogle Scholar
  7. 7.
    Toral, M.I., Richter, P., Cavieres, M., and González, W., Environ. Monit. Assess, 1999, vol. 54, no. 2, p. 191.CrossRefGoogle Scholar
  8. 8.
    Kang, C., Wang, Y., Li, R., Du, Y., Li, J., Zhang, B., Zhou, L., and Du, Y., Microchem. J., 2000, vol. 64, no. 2, p. 161.CrossRefGoogle Scholar
  9. 9.
    Lin, X., Chen, Y., and Li, S., Anal. Methods, 2013, vol. 5, no. 22, p. 6480.CrossRefGoogle Scholar
  10. 10.
    Zhang, W. and Danielson, N.D., Anal. Chim. Acta, 2003, vol. 493, no. 2, p. 167.CrossRefGoogle Scholar
  11. 11.
    Wang, S.P. and Chen, H.J., J. Chromatogr. A, 2002, vol. 979, nos. 1–2, p. 439.CrossRefGoogle Scholar
  12. 12.
    Brega, A., Prandini, P., Amaglio, C., and Pafuni, E., J. Chromatogr. A, 1990, vol. 535, p. 313.CrossRefGoogle Scholar
  13. 13.
    Elbarbry, F., Wilby, K., and Alcorn, J., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2006, vol. 834, nos. 1–2, p. 199.CrossRefGoogle Scholar
  14. 14.
    Almasi, A., Fischer, E., and Perjesi, P., J. Biochem. Biophys. Methods, 2006, vol. 69, nos. 1–2, p. 43.CrossRefGoogle Scholar
  15. 15.
    Opeolu, B.O., Fatoki, O.S., and Odendaal, J., Int. J. Phys. Sci., 2010, vol. 5, no. 5, p. 576.Google Scholar
  16. 16.
    Wissiak, R. and Rosenberg, E., J. Chromatogr. A, 2002, vol. 963, nos. 1–2, p. 149.CrossRefGoogle Scholar
  17. 17.
    Guo, X., Wang, Z., and Zhou, S., Talanta, 2004, vol. 64, no. 1, p. 135.CrossRefGoogle Scholar
  18. 18.
    Garbellini, G.S., Salazar-Banda, G.R., and Avaca, L.A., J. Braz. Chem. Soc., 2007, vol. 18, no. 6, p. 1095.CrossRefGoogle Scholar
  19. 19.
    Mulchandani, P., Hangarter, C.M., Lei, Y., Chen, W., and Mulchandani, A., Biosens. Bioelectron., 2005, vol. 21, no. 3, p. 523.CrossRefGoogle Scholar
  20. 20.
    Fisher, J., Vanourkova, L., Danhel, A., Vyskocil, V., Cizek, K., Barek, J., Peckova, K., Josypchuk, B., and Navratil, T., Int. J. Electrochem. Sci., 2007, vol. 2, no. 3, p. 226.Google Scholar
  21. 21.
    Bebeselea, A., Manea, F., Burtica, G., Nagy, L., and Nagy, G., Chem. Bull. “Politeh.” Univ. Timisoara, 2008, vol. 53, no. 67, p. 34.Google Scholar
  22. 22.
    Deng, P., Xu, Z., Feng, Y., and Li, J., Sens. Actuators, B, 2012, vol. 168, no. 1, p. 381.CrossRefGoogle Scholar
  23. 23.
    Zhang, T., Lang, Q., Yang, D., Li, L., Zeng, L., Zheng, C., Li, T., Wei, M., and Liu, A., Electrochim. Acta, 2013, vol. 106, p. 127.CrossRefGoogle Scholar
  24. 24.
    Rounaghi, G., Kakhki, R.M., and Toupkanloo, A.H., Mater. Sci. Eng., C, 2013, vol. 32, no. 2, p. 172.CrossRefGoogle Scholar
  25. 25.
    Barek, J., Ebertová, H., Mejstřík, V., and Zima, J., Collect. Czech. Chem. Commun., 1994, vol. 59, no. 8, p. 1761.CrossRefGoogle Scholar
  26. 26.
    Ni, Y., Wang, L., and Kokot, S., Anal. Chim. Acta, 2001, vol. 431, no. 8, p. 101.CrossRefGoogle Scholar
  27. 27.
    de Cássia Silva Luz, R., Santos Damos, F., Bof de Oliveira, A., Beek, J., and Tatsuo Kubota, L., Talanta, 2004, vol. 64, no. 4, p. 935.CrossRefGoogle Scholar
  28. 28.
    Hu, S.S., Xu, C.L., Wang, G.P., and Cui, D.F., Talanta, 2001, vol. 54, no. 1, p. 115.CrossRefGoogle Scholar
  29. 29.
    Moreira de Oliveira, R., Gonçalves Santos, N., de Almeida Alves, L., Moreira Soares Lima, K.C., Tatsuo Kubota, L., Santos Damos, F., and de Cássia Silva Luz, R., Sens. Actuators, B, 2015, vol. 221, p. 740.CrossRefGoogle Scholar
  30. 30.
    Lawrence, N.S., Pagels, M., Meredith, A., Jones, T.G.J., Hall, C.E., Pickles, C.S.J., Godfried, H.P., Banks, C.E., Compton, R.G., and Jiang, L., Talanta, 2006, vol. 69, no. 4, p. 829.CrossRefGoogle Scholar
  31. 31.
    Cordero-Rando, M.D., Barea-Zamora, M., Barberá-Salvador, J.M., Naranjo-Rodríges, I., Muñoz-Leyva, J.A., and Hidalgo-Hidalgo de Cisneros, J.L., Microchim. Acta, 1999, vol. 132, no. 1, p. 7.CrossRefGoogle Scholar
  32. 32.
    Muresanu, C., Copolovici, L., and Pogacean, F., Cent. Eur. J. Chem., 2005, vol. 3, no. 4, p. 592.Google Scholar
  33. 33.
    Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook on Analytical Chemistry), Moscow: Khimiya, 1989.Google Scholar
  34. 34.
    Angelova, M., Stoyanova, A., and Alexiev, A., Trakia J. Sci., 2, vol. 6, no. 1, p. 12.Google Scholar
  35. 35.
    Mottola, H.A., Kinetic Aspects of Analytical Chemistry, New York: Wiley, 1988.Google Scholar
  36. 36.
    Miller, J.N., Analyst, 1991, vol. 116, no. 1, p. 3.CrossRefGoogle Scholar
  37. 37.
    Perez-Bendito, D.P. and Silva, M., Kinetic Methods in Analytical Chemistry, Chichester: Ellis Horwood, 1988.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Miletić
    • 1
  • E. T. Pecev-Marinković
    • 1
    Email author
  • Z. M. Grahovac
    • 1
  • A. N. Pavlović
    • 1
  • S. B. Tošić
    • 1
  • I. D. Rašić Mišić
    • 1
  1. 1.Faculty of Natural Sciences and Mathematics, Department of ChemistryNisSerbia

Personalised recommendations