Skip to main content

Preconcentration and Determination Of Fluoxetine and Norfluoxetine in Biological and Water Samples with β-cyclodextrin Multi-walled Carbon Nanotubes as a Suitable Hollow Fiber Solid phase Microextraction Sorbent and High Performance Liquid Chromatography

Absract

‒A simple, selective and sensitive hollow fiber solid phase microextraction (SPME) combined with HPLC for the determination of fluoxetine (FLX) and norfluoxetine (NFLX) in human urine and real water samples has been developed and fully validated. Two solid phase microextraction sorbents, β-cyclodextrin functionalized multi-walled carbon nanotubes (βCD-MWCNTs) and acyl chloride functionalized MWCNTs, were synthesized and placed in the surface and pores of polypropylene hollow fiber by sol‒gel technique. In order to compare the analytical performance of βCD-MWCNTs as a new SPME sorbent with acyl chloride functionalized MWCNTs and MWCNTs, the hollow fiber device was directly immersed into the sample solution under a magnetic stirring. The βCD-MWCNTs are quite effective for extraction of fluoxetine and norfluoxetine. The extraction parameters such as pH of donor phase, donor phase volume, stirring rate, extraction time, type and volume of desorption solvent, and desorption time were thoroughly optimized. Under optimal conditions, the proposed method shows good linearity in the range of 1‒340 and 0.9‒360 ng/mL with a correlation coefficients of 0.9952 and 0.9967, low limits of detection of 0.4 and 0.3 ng/mL, and the high pre-concentration factors of 144 and 151 for determination of FLX and NFLX, respectively. Usage of proposed method for determination of FLX and NFLX in human urine and real water samples demonstrated a promising, simple, selective and sensitive sample preparation and determination method that can be applied in routine analysis.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Sabbioni, C., Bugamelli, F., Varani, G., Mercolini, L., Musenga, A., Saracino, M.A., Fanali, S., and Raggi, M.A., J. Pharm. Biomed. Anal., 2004, vol. 36, p. 351.

    Article  CAS  PubMed  Google Scholar 

  2. Aronoff, G.R., Bergstrom, R.F., Pottratz, S.T., Sloan, R.S., Wolen, R.L., and Lemberger, L., Clin. Pharmacol. Ther., 1984, vol. 36, p. 138.

    Article  CAS  PubMed  Google Scholar 

  3. Wong, D.T., Bymaster, F.P., Reid, L.R., Mayle, D.A., Krushinski, J.H., and Robertson, J.H., Neuropsychopharmacology, 1993, vol. 8, p. 337.

    Article  CAS  PubMed  Google Scholar 

  4. de Freitas, D.F., Dobrovolskin Porto, C.E., Pizzamiglio Vieira, E., and Pereira Bastos de Siqueira, M.E., J. Pharm. Biomed. Anal., 2010, vol. 51, p. 170.

    Article  CAS  PubMed  Google Scholar 

  5. Fernandes, C., dos Santos Neto, A.J., Rodrigues, J.C., Alves, C., and Lanças, F.M., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2007, vol. 847, p. 217.

    Article  CAS  Google Scholar 

  6. Felicioni Oliveira, A.F., Costa de Figueiredo, E., and dos Santos Neto, A.J., J. Pharm. Biomed. Anal., 2013, vol. 73, p. 53.

    Article  CAS  Google Scholar 

  7. Costa Queiroz, M.E., Oliveira, E.B., Breton, F., and Pawliszyn, J., J. Chromatogr. A, 2007, vol. 1174, p. 72.

    Article  CAS  Google Scholar 

  8. Gonçalves Silva, B.J., Lanças, F.M., and Costa Queiroz, M.E., J. Chromatogr. A, 2009, vol. 1216, p. 8590.

    Article  CAS  Google Scholar 

  9. Unceta, N., Gómez-Caballero, A., Sánchez, A., Millán, S., Sampedro, M.C., Goicolea, M.A., Sallés, J., and Barrio, R.J., J. Pharm. Biomed. Anal., 2008, vol. 46, p. 763.

    Article  CAS  PubMed  Google Scholar 

  10. Ghorbani, M., Chamsaz, M., and Rounaghi, G.H., J. Sep. Sci., 2016, vol. 39, p. 1082.

    Article  CAS  PubMed  Google Scholar 

  11. Ghorbani, M., Chamsaz, M., and Rounaghi, G.H., Anal. Bioanal. Chem., 2016, vol. 408, p. 4247.

    Article  CAS  PubMed  Google Scholar 

  12. Bagheri, H., Piri-Moghadam, H., and Naderi, M., TrAC, Trends Anal. Chem., 2012, vol. 34, p. 126.

    Article  CAS  Google Scholar 

  13. Wang, D., Chong, S.L., and Malik, A., Anal. Chem., 1997, vol. 69, p. 4566.

    Article  CAS  Google Scholar 

  14. Chong, S.L., Wang, D., Hayes, J.D., Wilhite, B.W., and Malik, A., Anal. Chem., 1997, vol. 69, p. 3889.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar, A., Malik, A.K., Tewary, D.K., and Singh, B., Anal. Chim. Acta, 2008, vol. 610, p. 1.

    Article  CAS  PubMed  Google Scholar 

  16. Pyrzynska, K., TrAC, Trends Anal. Chem., 2010, vol. 29, p. 718.

    Article  CAS  Google Scholar 

  17. Valcárcel, M., Cárdenas, S., Simonet, B.M., Moliner-Martínez, Y., and Lucena, R., TrAC, Trends Anal. Chem., 2008, vol. 27, p. 34.

    Article  CAS  Google Scholar 

  18. Wang, J.X., Jiang, D.-Q., Gu, Z.Y., and Yan, X.P., J. Chromatogr. A, 2006, vol. 1137, p. 8.

    Article  CAS  PubMed  Google Scholar 

  19. Kandah, M.I. and Meunier, J.L., J. Hazard. Mater., 2007, vol. 146, p. 283.

    Article  CAS  PubMed  Google Scholar 

  20. Lu, C., Liu, C., and Rao, G.P., J. Hazard. Mater., 2008, vol. 151, p. 239.

    Article  CAS  PubMed  Google Scholar 

  21. Shih, Y.H. and Li, M.S., J. Hazard. Mater., 2008, vol. 154, p. 21.

    Article  CAS  PubMed  Google Scholar 

  22. Soylak, M. and Ercan, O., J. Hazard. Mater., 2009, vol. 168, p. 1527.

    Article  CAS  PubMed  Google Scholar 

  23. Tuzen, M. and Soylak, M., J. Hazard. Mater., 2007, vol. 147, p. 219.

    Article  CAS  PubMed  Google Scholar 

  24. Tankiewicz, M., Morrison, C., and Biziuk, M., Microchem. J., 2013, vol. 108, p. 117.

    Article  CAS  Google Scholar 

  25. Es’haghi, Z., Khalili, M., Khazaeifar, A., and Rounaghi, G.H., Electrochim. Acta, 2011, vol. 56, p. 3139.

    Article  CAS  Google Scholar 

  26. Yang, Y., Chen, J., and Shi, Y.P., Talanta, 2012, vol. 97, p. 222.

    Article  CAS  PubMed  Google Scholar 

  27. Es’haghi, Z., Rezaeifar, Z., Rounaghi, G.H., Nezhadi, Z.A., and Golsefidi, M.A., Anal. Chim. Acta, 2011, vol. 689, p. 122.

    Article  CAS  PubMed  Google Scholar 

  28. Es’haghi, Z., Golsefidi, M.A., Saify, A., Tanha, A.A., Rezaeifar, Z., and Alian-Nezhadi, Z., J. Chromatogr. A, 2010, vol. 1217, p. 2768.

    Article  CAS  PubMed  Google Scholar 

  29. Wen, X., Tu, C., and Lee, H.K., Anal. Chem., 2004, vol. 76, p. 228.

    Article  CAS  PubMed  Google Scholar 

  30. Song, X.Y., Shi, Y.P., and Chen, J., Talanta, 2012, vol. 100, p. 153.

    Article  CAS  PubMed  Google Scholar 

  31. Fernandes, C., dos Santos Neto, A.J., Rodrigues, J.C., Alves, C., and Lanças, F.M., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2007, vol. 847, p. 217.

    Article  CAS  Google Scholar 

  32. Sagristà, E., Cortés, J.M., Larsson, E., Salvadó, V., Hidalgo, M., and Jönsson, J.A., J. Sep. Sci., 2012, vol. 35, p. 2460.

    Article  CAS  PubMed  Google Scholar 

  33. Felicioni Oliveira, A.F., Costa de Figueiredo, E., and dos Santos Neto, Á.J., J. Pharm. Biomed. Anal., 2013, vol. 73, p. 53.

Download references

FUNDING

The authors wish to thank the Payame Noor University, Islamic Azad University of Mashhad and Hakim Sabzevari University for the financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghorbani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, M., Esmaelnia, M., Aghamohammadhasan, M. et al. Preconcentration and Determination Of Fluoxetine and Norfluoxetine in Biological and Water Samples with β-cyclodextrin Multi-walled Carbon Nanotubes as a Suitable Hollow Fiber Solid phase Microextraction Sorbent and High Performance Liquid Chromatography. J Anal Chem 74, 540–549 (2019). https://doi.org/10.1134/S1061934819060030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934819060030

Keywords:

  • fluoxetine
  • norfluoxetine
  • human urine samples
  • β-cyclodextrin
  • MWCNTs
  • hollow fiber solid phase microextraction