Journal of Analytical Chemistry

, Volume 74, Issue 5, pp 505–512 | Cite as

A Sensitive and Simple Impedance Sensing Strategy for Glutathione and Glutathione Reductase Activity Detection

  • Yaohui Wu
  • Lun Jiang
  • Ge Ning
  • Lei Chu
  • Wen Liu
  • Yonghong WangEmail author
  • Yunlin ZhaoEmail author


A simple electrochemical method for detecting glutathione reductase was developed in this work. It was observed that the impedance of electrode increased obviously after the electrode modification by glutathione, and the value of impedance was closely related to the reduced glutathione (GSH) concentration. Based on the fact that glutathione reductase (GR) could catalyze oxidized glutathione (GSSG) to GSH rapidly in the presence of NADPH (β-nicotinamide adenine dinucleotide 2'-phosphate reduced), and as GSH was immobilized on the gold electrode surface, the impedance increased drastically. Meanwhile, it was found that the impedance was correlated with the activity of GR, and a chemical equation was obtained based on the relationship between the impedance and enzymatic activity. The range of enzymatic activity that could be measured at 0.005‒0.5 U by using this assay, and the detection limit was 0.005 U (1 U means reduction of 1.0 μmol GSSG per min at pH 7.2 at 25°C). The enzymatic activity of GR obtained by this method was compared with those obtained by colorimetric detection, and the results showed that the new method is reliable. Therefore, the new method is highly sensitive with convenience consuming time within 20 min to complete a test, thus showing a promising potential of being applied in medicine.


glutathione glutathione reductase detection impedance 



This work was supported in part by the Research Foundation of Education Bureau of Hunan Province, China (16A227), Hunan Provincial Natural Science Foundation of China (2018JJ3869), Science and Technology Innovation Foundation of Graduate Students in Hunan Province (CX2016B3). National Natural Science Foundation of China (21 305 164).


Ge Ning contributed to the data processing and language modification.


  1. 1.
    Wang, M., Sun, J., Xue, F., Shang, F., Wang, Z., and Tan, T., Appl. Biochem. Biotechnol., 2012, vol. 168, p. 198.CrossRefGoogle Scholar
  2. 2.
    Valdovinos-Flores, C. and Gonsebatt, M.E., Neurochem. Int., 2012, vol. 61, p. 405.CrossRefGoogle Scholar
  3. 3.
    Schettler, V., Wieland, E., Methe, H., Schuff-Werner, P., and Müller, G.A., Nephrol. Dial. Transplant., 1998, vol. 13, p. 2588.CrossRefGoogle Scholar
  4. 4.
    Trivedi, M.S., Deth, R., and Zhang, Y., FASEB J., 2016, vol. 30, p. 289.Google Scholar
  5. 5.
    Ahmadpoor, P., Eftekhar, E., and Nourooz-Zadeh, J., Iran. J. Kidney Dis., 2009, vol. 3, p. 22.Google Scholar
  6. 6.
    Giustarini, D., Dalle-Donne, I., and Lorenzini, S., Free Radical Biol. Med., 2012, vol. 53, p. 907.CrossRefGoogle Scholar
  7. 7.
    Couto, N., Wood, J., Barber, J., and Barber, J., Free Radical Biol. Med., 2016, vol. 95, p. 27.CrossRefGoogle Scholar
  8. 8.
    Prast-Nielsen, S., Huang, H.H., and Williams, D.L., Biochim. Biophys. Acta, 2011, vol. 1810, p. 1262.CrossRefGoogle Scholar
  9. 9.
    Gokturk, H., Ulusu, N.N., Gok, M., Tuncay, E., Can, B., and Turan, B., Mol. Cell. Biochem., 2014, vol. 395, p. 177.CrossRefGoogle Scholar
  10. 10.
    Christophe, B., Holger, B., Heiner, R.S., and Davioud-Charvet, E., J. Med. Chem., 2004, vol. 47, p. 5972.CrossRefGoogle Scholar
  11. 11.
    Ke, Z., Yu, Z., and Huang, Q., Plasma Process. Polym., 2013, vol. 10, p. 181.CrossRefGoogle Scholar
  12. 12.
    Park, H.W. and Kim, J.D., J. Ind. Eng. Chem., 2009, vol. 15, p. 578.CrossRefGoogle Scholar
  13. 13.
    Yin, G., Xin, X., Song, C., Chen, X., Zhang, J., Wu, S., Li, R., Liu, X., and Lu, X., Plant. Physiol. Biochem., 2014, vol. 80, p. 1.CrossRefGoogle Scholar
  14. 14.
    Treger, R.S., Cook, A., Rai, G., Maloney, D.J., Simeonov, A., Jadhav, A., Thomas, C.J., Williams, D.L., Cappello, M., and Vermeire, J.J., Int. J. Parasitol., 2012, vol. 2, p. 171.Google Scholar
  15. 15.
    Maity, D. and Govindaraju, T., Org. Biomol. Chem., 2013, vol. 11, p. 2098.CrossRefGoogle Scholar
  16. 16.
    Timur, S., Odaci, D., Dincer, A., Zihnioglu, F., and Telefoncu, A., Talanta, 2008, vol. 74, p. 1492.CrossRefGoogle Scholar
  17. 17.
    Fernández, I., Araque, E., Martínez-Ruiz, P., di Pierro, P., Villalonga, R., and Pingarrón, J.M., Electrochem. Commun., 2014, vol. 40, p. 13.CrossRefGoogle Scholar
  18. 18.
    Tietze, F., Anal. Biochem., 1969, vol. 27, p. 502.CrossRefGoogle Scholar
  19. 19.
    Jiang, H., Su, X., and Zhang, Y., Anal. Chem., 2016, vol. 88, p. 4766.CrossRefGoogle Scholar
  20. 20.
    Karacan, M.S., Tunç, T., and Oruç, H., Anal. Methods, 2015, vol. 7, p. 5142.CrossRefGoogle Scholar
  21. 21.
    Rahman, I., Kode, A., and Biswas, S.K., Nat. Protoc., 2006, vol. 1, p. 3159.CrossRefGoogle Scholar
  22. 22.
    Jiang, H., Su, X., Zhang, Y., Zhou, J., Fang, D., and Wang, X., Anal. Chem., 2016, vol. 88, p. 4766.CrossRefGoogle Scholar
  23. 23.
    Wang, T., Su, W., Xiao, Z., Hao, S., Li, Y., and Hu, J., Analyst, 2015, vol. 140, p. 5176.CrossRefGoogle Scholar
  24. 24.
    Massey, V. and Williams, C.H., J. Biol. Chem., 1965, vol. 240, p. 4470.Google Scholar
  25. 25.
    Ju, J., Zhang, R., and Chen, W., Sens. Actuators, B, 2016, vol. 228, p. 66.CrossRefGoogle Scholar
  26. 26.
    Karacan, M.S., Tunç, T., and Oruç, H., Anal. Methods, 2015, vol. 7, p. 5142.CrossRefGoogle Scholar
  27. 27.
    Lanfranchi, D.A., Belorgey, D., and Müller, T., Org. Biomol. Chem., 2012, vol. 10, p. 4795.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.College of Life Science and Technology, Central South University of Forestry and TechnologyChangshaChina
  2. 2.International Education Institute, Hunan University of Chinese MedicineChangshaChina

Personalised recommendations