Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 5, pp 425–436 | Cite as

Main Methods and Approaches to the Determination of Markers of Oxidative Stress—Organic Peroxide Compounds and Hydrogen Peroxide

  • M. E. Barsukova
  • I. A. VeselovaEmail author
  • T. N. Shekhovtsova
REVIEWS
  • 46 Downloads

Abstract

A review of publications, mainly for the last 15 years, characterizing the advantages, limitations, and prospects for the development of modern methods and approaches to the determination of organic hydroperoxides and hydrogen peroxide, which are the most important markers of the oxidative stress level in living organisms.

Keywords:

oxidative stress lipid peroxidation hydroperoxides determination biological fluids 

Notes

REFERENCES

  1. 1.
    Reed, T.T., Free Radical Biol. Med., 2011, vol. 51, no. 7, p. 1302.CrossRefGoogle Scholar
  2. 2.
    Gaschler, M.M. and Stockwell, B.R., Biochem. Biophys. Res. Commun., 2017, vol. 482, no. 3, p. 419.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Niki, E., Yoshida, Y., Saito, Y., and Noguchi, N., Biochem. Biophys. Res. Commun., 2005, vol. 338, no. 1, p. 668.CrossRefPubMedGoogle Scholar
  4. 4.
    Waraho, T., McClements, D.J., and Decker, E.A., Trends Food Sci. Technol., 2011, vol. 22, no. 1, p. 3.CrossRefGoogle Scholar
  5. 5.
    Tramutola, A., Lanzillotta, C., Perluigi, M., and Butterfield, D.A., Brain Res. Bull., 2017, vol. 133, p. 88.CrossRefPubMedGoogle Scholar
  6. 6.
    Yan, M.H., Wang, X., and Zhu, X., Free Radical Biol. Med., 2013, vol. 62, p. 90.CrossRefGoogle Scholar
  7. 7.
    Catala, A., Int. J. Biochem. Cell Biol., 2006, vol. 38, no. 9, p. 1482.CrossRefPubMedGoogle Scholar
  8. 8.
    Kinter, M., J. Chromatogr. B: Biomed. Sci. Appl., 1995, vol. 671, p. 223.CrossRefGoogle Scholar
  9. 9.
    Abuja, P.M. and Albertini, R., Clin. Chim. Acta, 2001, vol. 306, nos. 1–2, p. 1.CrossRefPubMedGoogle Scholar
  10. 10.
    Niki, E., Biochim. Biophys. Acta, 2014, vol. 1840, no. 2, p. 809.CrossRefPubMedGoogle Scholar
  11. 11.
    Sies, H., Oxidative Stress, London: Academic, 1985.Google Scholar
  12. 12.
    Ghosh, N., Das, A., Chaffee, S., Roy, S., and Sen, C.K., in Immunity Inflammation Health Disease, Chatterjee, S., Jungraithmayr, W., and Bagchi, D., Eds., Academic, 2017, p. 45.Google Scholar
  13. 13.
    Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M., J. Bot., 2012, vol. 2012, 217037.Google Scholar
  14. 14.
    Burke, K.E. and Wei, H., Toxicol. Ind. Health, 2009, vol. 25, nos. 4–5, p. 219.CrossRefPubMedGoogle Scholar
  15. 15.
    Tyuzikov, I.A., Vopr. Dietol., 2017, vol. 7, no. 1, p. 47.CrossRefGoogle Scholar
  16. 16.
    Klaunig, J.E. and Wang, Z., Curr. Opin. Toxicol., 2018, vol. 7, p. 116.CrossRefGoogle Scholar
  17. 17.
    Rogers, L.K. and Cismowski, M.J., Curr. Opin. Toxicol., 2018, vol. 7, p. 37.CrossRefPubMedGoogle Scholar
  18. 18.
    Crotty, G.F., Ascherio, A., and Schwarzschild, M.A., Exp. Neurol., 2017, vol. 298, p. 210.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sies, H., Redox Biol., 2017, vol. 11, p. 613.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Efimov, A.A. and Maslyakova, G.N., Saratov. Nauchno-Med. Zh., 2009, vol. 5, no. 1, p. 111.Google Scholar
  21. 21.
    Angeli, J.P.F., Garcia, C.C.M., Sena, F., Freitas, F.P., Miyamoto, P., Medeiros, M.H.G., and Mascio, P.D., Free Radical Biol. Med., 2011, vol. 51, no. 2, p. 503.CrossRefGoogle Scholar
  22. 22.
    Rahman, T., Hosen, I., Islam, M.M.T., and Shekhar, H.U., Adv. Biosci. Biotechnol., 2012, vol. 3, no. 7, p. 997.CrossRefGoogle Scholar
  23. 23.
    Uzbekov, M.G., Sots. Klin. Psikhiatr., vol. 2015, no. 4, p. 97.Google Scholar
  24. 24.
    Min, B. and Ahn, D.U., Food Sci. Biotechnol., 2005, vol. 14, no. 1, p. 152.Google Scholar
  25. 25.
    Dzhatdoeva, A.A., Polimova, A.M., Proskurnina, E.V., Proskurnin, M.A., and Vladimirov, Yu.A., J. Anal. Chem., 2016, vol. 71, no. 6, p. 542.CrossRefGoogle Scholar
  26. 26.
    Tkachuk, V.A., Tyurin-Kuz’min, P.A., Belousov, V.V., and Vorotnikov, A.V., Biol. Membr. 2012, vol. 29, nos. 1–2, p. 21.Google Scholar
  27. 27.
    Ayala, A., Munoz, M.F., and Arguelles, P., Oxid. Med. Cell. Longevity, 2014, vol. 2014, p. 31.CrossRefGoogle Scholar
  28. 28.
    Rodionov, P.V., Alieva, E.A., Sergeeva, E.A., Pavlova, M.E., Veselova, I.A., and Shekhovtsova, T.N., J. Anal. Chem., 2016, vol. 71, no. 9, p. 932.CrossRefGoogle Scholar
  29. 29.
    Demiyanova, A.S. and Sakharov, I.Yu., Analyst, 2015, vol. 140, p. 2964.CrossRefPubMedGoogle Scholar
  30. 30.
    Cramer, G.L., Miller, J.F., Pendleton, R.B., and Lands, W.E.M., Anal. Biochem., 1991, vol. 193, no. 2, p. 204.CrossRefPubMedGoogle Scholar
  31. 31.
    Pastorino, A.M., Zamburlini, A., Zennaro, L., Maiorino, M., and Ursini, F., Methods Enzymol., 1991, vol. 300, p. 33.CrossRefGoogle Scholar
  32. 32.
    Asakawa, T.M., J. Am. Oil Chem. Soc., 1978, vol. 55, p. 619.CrossRefGoogle Scholar
  33. 33.
    Hara, P. and Totani, Y., J. Am. Oil Chem. Soc., 1988, vol. 65, p. 1948.CrossRefGoogle Scholar
  34. 34.
    Gay, C.A. and Gebicki, J.M., Anal. Biochem., 2003, vol. 315, no. 1, p. 29.CrossRefPubMedGoogle Scholar
  35. 35.
    Banerjee, D., Madhusoodanan, U.K., Sharanabasappa, M., Ghosh, P., and Jacob, J., Clin. Chim. Acta, 2003, vol. 337, nos. 1–2, p. 147.CrossRefPubMedGoogle Scholar
  36. 36.
    Bou, R., Codony, R., Tres, A., Decker, E.A., and Guardiola, F., Anal. Biochem., 2008, vol. 377, no. 1, p. 1.CrossRefPubMedGoogle Scholar
  37. 37.
    Jiang, Z.Y., Hunt, J.V., and Wolff, P.P., Anal. Biochem., 1992, vol. 202, no. 2, p. 384.CrossRefPubMedGoogle Scholar
  38. 38.
    Nourooz-Zadeh, J., Methods Enzymol., 1991, vol. 300, p. 58.CrossRefGoogle Scholar
  39. 39.
    Arab, K. and Steghens, J.P., Anal. Biochem., 2004, vol. 325, no. 1, p. 158.CrossRefPubMedGoogle Scholar
  40. 40.
    Santas, J., Guardiola, F., Rafecas, M., and Bou, R., Anal. Biochem., 2013, vol. 434, no. 1, p. 172.CrossRefPubMedGoogle Scholar
  41. 41.
    Chotimarkorn, C., Nagasaka, R., Ushio, H., Ohshima, T., and Matsunaga, P., Biochem. Biophys. Res. Commun., 2005, vol. 338, no. 2, p. 1222.CrossRefPubMedGoogle Scholar
  42. 42.
    Okimoto, Y., Watanabe, A., Niki, E., Yamashita, T., and Noguchi, N., FEBS Lett., 2000, vol. 474, p. 137.CrossRefGoogle Scholar
  43. 43.
    Takahashi, M., Shibata, M., and Niki, E., Free Radical Biol. Med., 2001, vol. 31, p. 164.CrossRefGoogle Scholar
  44. 44.
    Bou, R., Chen, B., Guardiola, F., Codony, R., and Decker, E.A., Food Chem., 2010, vol. 123, no. 3, p. 892.CrossRefGoogle Scholar
  45. 45.
    Akasaka, K. and Ohrui, H., J. Chromatogr. A, 2000, vol. 881, nos. 1–2, p. 159.CrossRefPubMedGoogle Scholar
  46. 46.
    Ohshima, T., Hopia, A., German, J.B., and Frankel, E.N., Lipids, 1996, vol. 31, no. 10, p. 1091.CrossRefPubMedGoogle Scholar
  47. 47.
    Matot, I., Manevich, Y., Al-Mehdi, A.-B., Song, C., and Fisher, A.B., Free Radical Biol. Med., 2003, vol. 34, no. 6, p. 785.CrossRefGoogle Scholar
  48. 48.
    Germain, M.E. and Knapp, M.J., Inorg. Chem., 2008, vol. 47, no. 21, p. 9748.CrossRefPubMedGoogle Scholar
  49. 49.
    Coudray, C., Richard, M.J., and Favier, A.E., Anal. Free Radicals Biol. Syst., 1995, p. 185.Google Scholar
  50. 50.
    Tsai, M.-C. and Huang, T.-L., J. Affective Disord., 2015, vol. 173, p. 22.CrossRefGoogle Scholar
  51. 51.
    Kosugi, H. and Kikugawa, K., Free Radical Biol. Med., 1989, vol. 7, no. 2, p. 205.CrossRefGoogle Scholar
  52. 52.
    Grintzalis, K., Zisimopoulos, D., Grune, T., Weber, D., and Georgiou, C.D., Free Radical Biol. Med., 2013, vol. 59, p. 27.CrossRefGoogle Scholar
  53. 53.
    Makhanova, R.S., Izv. Orenb. Gos. Agrar. Univ., 2011, vol. 29, no. 1, p. 231.Google Scholar
  54. 54.
    Forman, H.J., Bernardo, A., and Davies, K.J.A., Arch. Biochem. Biophys., 2016, vol. 603, no. 1, p. 48.CrossRefPubMedGoogle Scholar
  55. 55.
    Lacy, F., Kailasam, M.T., O’Connor, D.T., Schmid-Schonbein, G.W., and Parmer, R.J., Hypertension, 2000, vol. 36, p. 878.CrossRefPubMedGoogle Scholar
  56. 56.
    Aune, P.E., Yeh, P.T., Zelinski, D.P., and Angelos, M.G., Resuscitation, 2011, vol. 82, p. 222.CrossRefPubMedGoogle Scholar
  57. 57.
    Nakahara, R., Fujlmoto, T., Doi, M., Morita, K., Yamaguchi, T., and Fujita, Y., Chem. Pharm. Bull., 2008, vol. 56, no. 7, p. 977.CrossRefPubMedGoogle Scholar
  58. 58.
    Nakahara, R., Kashitani, P., Hayakawa, K., Kitani, Y., Yamaguchi, T., and Fujita, Y., J. Fluoresc., 2009, vol. 19, no. 5, p. 769.CrossRefPubMedGoogle Scholar
  59. 59.
    Biswaranjan, P., Bio Med. Res. Int., 2014, vol. 2014, 342958.Google Scholar
  60. 60.
    Beltyukova, P.V., Vityukova, E.O., and Egorova, A.V., J. Appl. Spectrosc., 2007, vol. 74, no. 3, p. 344.CrossRefGoogle Scholar
  61. 61.
    Courrol, L., Bellini, M.H., Tarelho, L.V.G., Silva, F.R.O., Mansano, R.D., Gomes, L., Vieira, N.D., and Sho, N., Anal. Biochem., 2006, vol. 355, p. 140.CrossRefPubMedGoogle Scholar
  62. 62.
    Wolfbeis, O.S., Durkop, A., Wu, M., and Lin, Z., Angew. Chem., Int. Ed. Engl., 2002, vol. 41, p. 4495.CrossRefGoogle Scholar
  63. 63.
    Jimenez, A.M. and Navas, M.J., Grasas Aceites (Sevilla, Spain), 2002, vol. 53, no. 1, p. 64.Google Scholar
  64. 64.
    Navas, M.J. and Jimenez, A.M., Food Chem., 1996, vol. 55, p. 7.CrossRefGoogle Scholar
  65. 65.
    Rolewski, P., Siger, A., Nogala-Kałucka, M., and Polewski, K., Food Res. Int., 2009, vol. 42, p. 165.CrossRefGoogle Scholar
  66. 66.
    Proskurnina, E.V., Dzhatdoeva, A.A., Lobichenko, E.N., Shalina, R.I., and Vladimirov, Yu.A., J. Anal. Chem., 2017, vol. 72, no. 7, p. 751.CrossRefGoogle Scholar
  67. 67.
    Volkova, P.O., Alekseev, A.V., Dzhatdoeva, A.A., Proskurnina, E.V., and Vladimirov, Yu.A., Moscow Univ. Chem. Bull. (Engl. Transl.), 2016, vol. 71, no. 1, p. 87.Google Scholar
  68. 68.
    Yamamoto, Y., Frei, B., and Ames, B.N., Methods Enzymol., 1990, vol. 186, p. 371.CrossRefPubMedGoogle Scholar
  69. 69.
    Hui, P., Chiba, H., Sakurai, T., Asakawa, C., Nagasaka, H., Murai, T., Ide, H., and Kurosawa, T., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2007, vol. 857, no. 1, p. 158.CrossRefGoogle Scholar
  70. 70.
    Teselkin, Yu.O. and Babenkova, I.V., Vestn. Ross. Gos. Med. Univ., 2011, no. 5, p. 54.Google Scholar
  71. 71.
    Wada, M., Inoue, K., Ihara, A., Kishikawa, N., Nakashima, K., and Kurodab, N., J. Chromatogr. A, 2003, vol. 987, p. 189.CrossRefPubMedGoogle Scholar
  72. 72.
    Etsuo, N., Biochim. Biophys. Acta, 2014, vol. 1840, no. 2, p. 809.CrossRefGoogle Scholar
  73. 73.
    Tokumaru, P., Iguchi, H., and Kojo, P., Mech. Ageing Dev., 1996, vol. 86, p. 67.CrossRefPubMedGoogle Scholar
  74. 74.
    Tokumaru, P., Tsukamoto, I., Iguchi, H., and Kojo, P., Anal. Chim. Acta, 1995, vol. 307, p. 97.CrossRefGoogle Scholar
  75. 75.
    Asano, M., Nushid, H., Adachi, J., Nagasaki, Y., Nakagawa, K., Kuse, A., and Ueno, Y., Legal Med., 2009, vol. 11, p. 223.CrossRefGoogle Scholar
  76. 76.
    Miyazawa, T., Fujimoto, K., Suzuki, T., and Yasuda, K., Methods Enzymol., 1994, vol. 233, p. 324.CrossRefPubMedGoogle Scholar
  77. 77.
    Yamamoto, Y., Methods Enzymol., 1994, vol. 233, p. 319.CrossRefPubMedGoogle Scholar
  78. 78.
    Meguro, H., Akasaka, K., and Ohru, H., Methods Enzymol., 1990, vol. 186 P, p. 157.Google Scholar
  79. 79.
    Angeli, J.P.F., Garcia, C.C.M., Sena, F., Freitas, P., Miyamoto, P., Medeiros, M.H.G., and Mascio, P.D., Free Radical Biol. Med., 2011, vol. 51, p. 503.CrossRefGoogle Scholar
  80. 80.
    Mokrushina, A.V., Heim, M., Karyakina, E.E., Kuhn, A., and Karyakin, A.A., Electrochem. Commun., 2013, vol. 29, p. 78.CrossRefGoogle Scholar
  81. 81.
    Adhoum, N. and Monser, L., Sens. Actuators, B, 2008, vol. 133, no. 2, p. 588.CrossRefGoogle Scholar
  82. 82.
    Chang, H., Wang, X., Shiu, K.K., Zhu, Y., Wang, J., Li, Q., Chen, B., and Jiang, H., Biosens. Bioelectron., 2013, vol. 41, p. 789.CrossRefPubMedGoogle Scholar
  83. 83.
    Xiang, C., Zou, Y., Sun, L.X., and Xu, F., Talanta, 2007, vol. 74, no. 2, p. 206.CrossRefPubMedGoogle Scholar
  84. 84.
    Moozarm, N.P., Lorestani, F., Meng, W.P., and Alias, Y., Appl. Surf. Sci., 2015, vol. 332, p. 648.CrossRefGoogle Scholar
  85. 85.
    Koodlur, L.S., Bioelectrochemistry, 2013, vol. 91, p. 21.CrossRefPubMedGoogle Scholar
  86. 86.
    Pillay, J. and Ozoemena, K.I., Electrochim. Acta, 2009, vol. 54, no. 22, p. 5053.CrossRefGoogle Scholar
  87. 87.
    Dontsova, E.A., Zeifman, Y.S., Budashov, I.A., Eremenko, A.V., Kalnov, P.L., and Kurochkin, I.N., Sens. Actuators, B, 2011, vol. 159, no. 1, p. 261.CrossRefGoogle Scholar
  88. 88.
    Campanella, L., Giancola, D., Gregori, E., and Tomassetti, M., Sens. Actuators, B, 2003, vol. 95, p. 321.CrossRefGoogle Scholar
  89. 89.
    Lin, X.Q., Chen, J., and Chen, Z.H., Electroanalysis, 2000, vol. 12, no. 4, p. 306.CrossRefGoogle Scholar
  90. 90.
    Chunmei, Y., Wanga, L., Lia, W., Zhub, C., Baoa, N., and Gua, H., Sens. Actuators, B, 2015, vol. 211, p. 17.CrossRefGoogle Scholar
  91. 91.
    Ahammad, P., J. Biosens. Bioelectron., 2013, S9:001.  https://doi.org/10.4172/2155-6210.S9-001
  92. 92.
    Kogularasu, P., Govindasamy, M., Chen, P.-M., and Mani, V., Sens. Actuators, B, 2017, vol. 253, p. 773.CrossRefGoogle Scholar
  93. 93.
    Ensafi, A.A., Rezaloo, F., and Rezaei, B., Sens. Actuators, B, 2016, vol. 231, p. 239.CrossRefGoogle Scholar
  94. 94.
    Zhang, R. and Chen, W., Biosens. Bioelectron., 2017, vol. 89, p. 249.CrossRefPubMedGoogle Scholar
  95. 95.
    Hu, Y., Zhang, Q., Guo, Z., and Wang, P., J. Electroanal. Chem., 2017, vol. 801, p. 306.CrossRefGoogle Scholar
  96. 96.
    Wang, T., Zhu, H., Zhuoj, J., Zhu, Z., Papakonstantinou, P., Lubarsky, G., Lin, J., and Li, M., Anal. Chem., 2013, vol. 85, no. 21, p. 10289.CrossRefPubMedGoogle Scholar
  97. 97.
    Ben-Amor, P., Vanhovec, E., Belaïdi, F.S., Charlot, P., Colin, D., Rigoulet, M., Devin, A., Sojic, N., Launay, J., Temple-Boyer, P., and Arbault, P., Electrochim. Acta, 2014, vol. 126, p. 171.CrossRefGoogle Scholar
  98. 98.
    Dutta, A.K., Das, P., Samanta, P.K., Roy, P., Adhikary, B., and Biswas, P., Electrochim. Acta, 2014, vol. 144, p. 282.CrossRefGoogle Scholar
  99. 99.
    Chatterjee, P. and Chen, A., Biosens. Bioelectron., 2012, vol. 35, no. 1, p. 302.CrossRefPubMedGoogle Scholar
  100. 100.
    Deng, K.Q., Zhou, J.H., and Li, X.F., Electrochim. Acta, 2013, vol. 95, p. 18.CrossRefGoogle Scholar
  101. 101.
    Liu, X., Luo, L., Ding, Y., Xu, Y., and Li, F., J. Solid State Electrochem., 2011, vol. 15, p. 447.CrossRefGoogle Scholar
  102. 102.
    Lu, L.M., Qiu, X.L., Zhang, X.B., Shen, G.L., Tan, W.H., and Yu, R.Q., Biosens. Bioelectron., 2013, vol. 45, p. 102.CrossRefPubMedGoogle Scholar
  103. 103.
    Wang, Y. and Hasebe, Y., Sens. Actuators, B, 2011, vol. 155, p. 722.CrossRefGoogle Scholar
  104. 104.
    Song, M.-J., Hwang, P.W., and Whang, D., J Appl. Electrochem., 2010, vol. 40, p. 2099.CrossRefGoogle Scholar
  105. 105.
    Farah, A.M., Thema, F.T., and Dikio, E.D., Int. J. Electrochem. Sci., 2012, vol. 7, p. 5069.Google Scholar
  106. 106.
    Kitte, P.A., Assresahegn, B.D., and Soreta, T.R., J. Serb. Chem. Soc., 2013, vol. 78, no. 5, p. 701.CrossRefGoogle Scholar
  107. 107.
    Lin, K.-C., Yin, C.-Y., and Chen, P.-M., Sens. Actuators, B, 2011, vol. 157, p. 202.CrossRefGoogle Scholar
  108. 108.
    Puganova, E.A. and Karyakin, A.A., Sens. Actuators, B, 2005, vol. 109, p. 167.CrossRefGoogle Scholar
  109. 109.
    Alpeeva, I.S., Niculescu-Nistor, M., Leon, J.C., Csoregi, E., and Sakharov, I.Y., Biosens. Bioelectron., 2005, vol. 21, p. 742.CrossRefPubMedGoogle Scholar
  110. 110.
    Cui, L., Chen, L., Xu, M., Su, H., and Ai, P., Anal. Chim. Acta, 2012, vol. 712, p. 64.CrossRefPubMedGoogle Scholar
  111. 111.
    Gündoğan-Paul, M., Çelebi, P.S., Özyörük, H., and Yildiz, A., Biosens. Bioelectron., 2002, vol. 17, p. 875.CrossRefPubMedGoogle Scholar
  112. 112.
    Haiying, L., Shaohua, Y., Yiqin, Q., and Zhaojin, W., J. Shanghai Univ., 1998, vol. 2, no. 4, p. 320CrossRefGoogle Scholar
  113. 113.
    Mulchandani, A., Wang, C.L., and Weetall, H.H., Anal. Chem., 1995, vol. 67, p. 94.CrossRefGoogle Scholar
  114. 114.
    Guo, Y. and Dong, P., Anal. Chem., 1997, vol. 69, p. 1904.CrossRefGoogle Scholar
  115. 115.
    Baldini, E., Dall’Orto, V.C., Danilowicz, C., Rezzano, I., and Calvo, E.J., Electroanalysis, 2002, vol. 14, p. 1157.CrossRefGoogle Scholar
  116. 116.
    Kozan, J.V.B., Silva, R.P., Serrano, P.H.P., Lima, A.W.O., and Angnes, L., Biosens. Bioelectron., 2010, vol. 25, p. 1143.CrossRefPubMedGoogle Scholar
  117. 117.
    Dimcheva, N. and Horozova, E., Anal. Bioanal. Chem., 2005, vol. 382, p. 1374.CrossRefPubMedGoogle Scholar
  118. 118.
    Tsai, W.-C. and Cass, A.E.G., Analyst, 1995, vol. 120, p. 2249.CrossRefGoogle Scholar
  119. 119.
    Wang, J., Lin, Y., and Chen, L., Analyst, 1993, vol. 118, p. 277.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. E. Barsukova
    • 1
  • I. A. Veselova
    • 1
    Email author
  • T. N. Shekhovtsova
    • 1
  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations