Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 2, pp 93–99 | Cite as

Cloud Point Extraction and Simultaneous Spectrophotometric Determination of Allura Red and Carmoisine using Wavelet Orthogonal Signal Correction–Partial Least Squares Method

  • Ahmadreza AmraeiEmail author
  • Ali Niazi
  • Mohammad Alimoradi
  • Mohammad Hosseini
ARTICLES
  • 20 Downloads

Abstract

This study presents a simple, safe, cheap, and efficient cloud point extraction method for the simultaneous pre-concentration and determination of Allura Red (AR) and Carmoisine (CA) in food samples. Wavelet orthogonal signal correction was applied to denoise the spectrophotometric data and in combination with partial least squares regression was used to determine each compound simultaneously after cloud point extraction. The effects of different variables on the extraction of both dyes were investigated and optimized. Calibration graphs were linear in the range of 0.06 to 2.0 µg/mL for AR and 0.05 to 1.5 µg/mL for CA. Limits of detection for AR and CA were 0.016 and 0.015 µg/mL, respectively. The root mean square error of prediction for AR and CA was 0.014 and 0.024 µg/mL, respectively.

Keywords:

simultaneous determination wavelet orthogonal signal correction partial least squares Allura Red Carmoisine cloud point extraction 

Notes

ACKNOWLEDGMENT

The authors are gratefully acknowledging the support of this study by Islamic Azad University, Arak Branch, as well as Lorestan veterinary laboratory.

REFERENCES

  1. 1.
    Khani, R., Ghasemi, J.B., and Shemirani, F., Spectrochim. Acta, Part A, 2014, vol. 122, p. 295.CrossRefGoogle Scholar
  2. 2.
    Pourreza, N., Rastegarzadeh, S., and Larki, A., Food Chem., 2011, vol. 126, no. 3, p. 1465.CrossRefGoogle Scholar
  3. 3.
    Pourreza, N. and Ghomi, M., Talanta, 2011, vol. 84, no. 1, p. 240.CrossRefGoogle Scholar
  4. 4.
    Minioti, K.S., Sakellarious, C.F., and Thomai-dis, N.S., Anal. Chim. Acta, 2007, vol. 583, no. 1, p. 103.CrossRefGoogle Scholar
  5. 5.
    Kritsunankul, O. and Jakmunee, J., Talanta, 2011, vol. 84, no. 5, p. 1342.CrossRefGoogle Scholar
  6. 6.
    Dinc, E., Baydan, E., Kanbur, M., and Onur, F., Talanta, 2002, vol. 58, no. 3, p. 579.CrossRefGoogle Scholar
  7. 7.
    Heidarizadi, E. and Tabaraki, R., Talanta, 2016, vol. 148, no. 1, p. 237.CrossRefGoogle Scholar
  8. 8.
    Heydari, R., Hosseini, M., and Zarabi, S., Spectrochim. Acta, Part A, 2015, vol. 150, p. 786.CrossRefGoogle Scholar
  9. 9.
    Chanlon, S., Joly-Pottuz, L., Chatelut, M., Vittoria, O., and Cretier, J.L., J. Food Compos. Anal., 2005, vol. 18, no. 6, p. 503.CrossRefGoogle Scholar
  10. 10.
    Yilmaz, U.T., Ergun, F., and Yilmaz, H., J. Food Drug Anal., 2014, vol. 22, no. 3, p. 329.CrossRefGoogle Scholar
  11. 11.
    Nevado, J.J.B., Cabanillas, C.G., and Salce-do, A.M.C., Anal. Chim. Acta, 1999, vol. 378, nos. 1–3, p. 63.CrossRefGoogle Scholar
  12. 12.
    Geladi, P. and Kowalski, B.R., Anal. Chim. Acta, 1986, vol. 185, p. 1.CrossRefGoogle Scholar
  13. 13.
    Systems under Indirect Observation: Causality, Structure, Prediction, Jöreskog, K.G. and Wold, H., Eds., Amsterdam: North Holland, 1982, part 3.Google Scholar
  14. 14.
    Niazi, A., Ghasemi, J.B., and Yazdanipour, A., Spectrochim. Acta, Part A, 2007, vol. 68, no. 3, p. 523.CrossRefGoogle Scholar
  15. 15.
    Gao, L. and Ren, S., Electrochim. Acta, 2009, vol. 54, no. 11, p. 3161.CrossRefGoogle Scholar
  16. 16.
    Moghadam, M., Haji Shabani, A.M., and Dadfarnia, S., Spectrochim. Acta, Part A, 2015, vol. 135, p. 929.CrossRefGoogle Scholar
  17. 17.
    Moghadam, M., Poorakbarian Jahromi, S.M., and Darehkordi, A., Food Chem., 2016, vol. 192, p. 424.CrossRefGoogle Scholar
  18. 18.
    Niazi, A., Azizi, A., and Ramezani, M., Spectrochim. Acta, Part A, 2008, vol. 71, no. 3, p. 1172.CrossRefGoogle Scholar
  19. 19.
    Niazi, A. and Goodarzi, M., Spectrochim. Acta, Part A, 2008, vol. 69, no. 4, p. 1165.CrossRefGoogle Scholar
  20. 20.
    Feudale, R.N., Liu, Y., Woody, N.A., Tan, H., and Brown, S.D., J. Chemometr., 2005, vol. 19, no. 1, p. 55.CrossRefGoogle Scholar
  21. 21.
    Gao, L. and Ren, S., Spectrochim. Acta, Part A, 2009, vol. 73, no. 5, p. 960.CrossRefGoogle Scholar
  22. 22.
    Gao, L. and Ren, S., Chemom. Intell. Lab. Syst., 2010, vol. 100, no. 1, p. 57.CrossRefGoogle Scholar
  23. 23.
    Zolgharnein, J., Shariatmanesh, T., and Babaei, A., Sens. Actuators, B, 2014, vol. 197, p. 326.CrossRefGoogle Scholar
  24. 24.
    Kaykhaii, M. and Ghasemi, E., J. Anal. Chem., 2016, vol. 71, no. 8, p. 844.CrossRefGoogle Scholar
  25. 25.
    Shemshadi, R.S., Zeinalov, N.A., Efendiev, A.A., Arvand, M.S., and Shakhtakhtinskii, T.N., J. Anal. Chem., 2012, vol. 67, no. 6, p. 577.CrossRefGoogle Scholar
  26. 26.
    Gouda, A.A., Spectrochim. Acta, Part A, 2014, vol. 131, p. 138.CrossRefGoogle Scholar
  27. 27.
    Lurie, J.J., Handbook of Analytical Chemistry, Moscow: Mir Publishers, 1978.Google Scholar
  28. 28.
    Sorouraddin, M.H., Saadati, M., and Mirabi, F., J. Food Drug Anal., 2015, vol. 23, no. 3, p. 447.CrossRefGoogle Scholar
  29. 29.
    Soylak, M., Unsal, Y.E., and Tuzen, M., Food Chem. Toxicol., 2011, vol. 49, no. 2, p. 1183.CrossRefGoogle Scholar
  30. 30.
    European Food Safety Authority. www.efsa.europa.eu. Assessed December, 2017.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Ahmadreza Amraei
    • 1
    Email author
  • Ali Niazi
    • 1
  • Mohammad Alimoradi
    • 1
  • Mohammad Hosseini
    • 1
  1. 1.Department of Chemistry, Faculty of Science Islamic Azad University, Arak BranchArakIran

Personalised recommendations