Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 1, pp 41–57 | Cite as

Optical Sensors on the Basis of a Polyelectrolyte Peroxidase–Chitosan Complex for the Determination of Biologically Active Compounds

  • I. A. VeselovaEmail author
  • T. N. Shekhovtsova
REVIEWS
  • 22 Downloads

Abstract

The review summarizes authors’ works of the last 15 year covering the possibilities, advantages, and prospects for the use of optical sensors based on peroxidase for the determination of a wide range of biologically active compounds, i.e., phenolic compounds and hydroperoxides of different structures, phenothiazines, catecholamines, and their metabolites, for the quality control of drugs, foodstuffs, biomedical research, and clinical diagnostics.

Keywords:

optical sensors horseradish peroxidase indicator reactions spectrophotometry fluorescence phenolic compounds hydroperoxides phenothiazine catecholamines and their metabolites analysis drugs foodstuff biological fluids 

Notes

ACKNOWLEDGMENTS

We are grateful to A.V. Kireiko, P.V. Rodionov, and L.I. Malinina for participation in the problem formulation, performance of experiments, and discussion of the results of studies.

This work was supported by the Russian Science Foundation, project no. 14-23-00012.

REFERENCES

  1. 1.
    Zakharova, G.S., Uporov, V.I., and Tishkov, V.I., Usp. Biol. Khim., 2011, vol. 51, p. 37.Google Scholar
  2. 2.
    That T. Ngo, Anal. Lett., 2010, vol. 43, nos. 10–11, p. 1572.CrossRefGoogle Scholar
  3. 3.
    Shivakumar, A., Int. J. Clin. Nutr. Diet, 2017, vol. 3, no. 2, p. 1.Google Scholar
  4. 4.
    Veselova, I.A., Malinina, L.I., Rodionov, P.V., and Shekhovtsova, T.N., Talanta, 2012, vol. 102, p. 101.CrossRefGoogle Scholar
  5. 5.
    Enzyme Stabilization and Immobilization. Methods and Protocols, Minteer, Sh.D., Ed., Ser.: Methods in Molecular Biology, vol. 679, Heidelberg: Springer, 2010.Google Scholar
  6. 6.
    Veselova, I.A., Kireiko, A.V., and Shekhovtsova, T.N., Appl. Biochem. Microbiol., 2009, vol. 45, no. 2, p. 125.CrossRefGoogle Scholar
  7. 7.
    Klibanov, A.M., Nature, 2001, vol. 409, p. 241.CrossRefGoogle Scholar
  8. 8.
    Martinek, K., Levashov, A.V., Khmelnitsky, Y.L., Klyachko, N.L., and Berezin, I.V., Science, 1982, vol. 218, p. 889.CrossRefGoogle Scholar
  9. 9.
    Ramirez-Corredores, M. and Borole, A., Biocatalysis in Oil Refining, London: Elsevier, 2007.Google Scholar
  10. 10.
    Fitzpatrick, P.A., Steinmetz, A.C.U., Ringe, D., and Klibanov, A.M., Proc. Natl. Acad. Sci. U. S. A., 1993, vol. 90, p. 8653.CrossRefGoogle Scholar
  11. 11.
    Yennawar, H.P., Yennawar, N.H., and Farber, G.K., J. Am. Chem. Soc., 1995, vol. 117, p. 577.CrossRefGoogle Scholar
  12. 12.
    Mozhaev, V.V., Poltevsky, K.G., Slepnev, V.I., Badun, G.A., and Levashov, A.V., FEBS Lett., 1991, vol. 292, p. 159.CrossRefGoogle Scholar
  13. 13.
    Wu, X.J., Choi, M.M.F., and Wu, X.M., Analyst, 2004, vol. 129, p. 1143.CrossRefGoogle Scholar
  14. 14.
    Khmelnitsky, Yu.L., Mozhaev, V.V., Belova, A.B., Sergeeva, M.V., and Martinek, K., Eur. J. Biochem., 1991, vol. 198, p. 31.CrossRefGoogle Scholar
  15. 15.
    Zaks, A. and Klibanov, A.M., J. Biol. Chem., 1988, vol. 263, p. 3194.Google Scholar
  16. 16.
    Vakurov, A.V., Gladilin, A.K., Levashov, A.V., and Khmelnitsky, Y.L., Biotechnol. Lett., 1994, vol. 16, p. 175.CrossRefGoogle Scholar
  17. 17.
    Dordick, J.S., Biotechnol. Prog., 1992, vol. 8, p. 259.CrossRefGoogle Scholar
  18. 18.
    Sears, P., Schuster, M., Wang, P., Witte, K., and Wong, C.-H., J. Am. Chem. Soc., 1994, vol. 116, p. 6521.CrossRefGoogle Scholar
  19. 19.
    Khmelnitsky, Yu.L., Belova, A.B., Levashov, A.V., and Mozhaev, V.V., FEBS Lett., 1991, vol. 284, p. 267.CrossRefGoogle Scholar
  20. 20.
    Kudryashova, E.V., Artemova, T.M., Vinogradov, A.A., Gladilin, A.K., Mozhaev, V.V., and Levashov, A.V., Protein Eng., 2003, vol. 16, p. 303.CrossRefGoogle Scholar
  21. 21.
    Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., and Chaloupkova, R., ACS Catal., 2013, vol. 3, no. 12, p. 2823.CrossRefGoogle Scholar
  22. 22.
    Rich, J.O., Mozhaev, V.V., Dordick, J.S., Clark, D.S., and Khmelnitsky, Yu.L., J. Am. Chem. Soc., 2002, vol. 124, p. 5254.CrossRefGoogle Scholar
  23. 23.
    Lukacheva, L.V., Zakemovskaya, A.A., Karyakina, E.E., Zorov, I.N., Sinitsyn, A.P., Sukhacheva, M.V., Netrusov, A.I., and Karyakin, A.A., J. Anal. Chem., 2007, vol. 62, no. 4, p. 388.CrossRefGoogle Scholar
  24. 24.
    Karyakin, A.A., Kotel’nikova, E.A., Lukacheva, L.V., and Karyakina, E.E., Anal. Chem., 2002, no. 74, p. 1593.Google Scholar
  25. 25.
    Kazakova, L.I., Shabarchina, L.I., Anastasova, S., Pavlov, A.M., Vadgama, P., Skirtach, A.G., and Sukhorukov, G.B., Anal. Bioanal. Chem., 2013, vol. 405, p. 1559.CrossRefGoogle Scholar
  26. 26.
    Chaniotakis, N.A., Anal. Bioanal. Chem., 2004, vol. 378, p. 89.CrossRefGoogle Scholar
  27. 27.
    Veselova, I.A. and Shekhovtsova, T.N., Anal. Chim. Acta, 1999, vol. 392, p. 151.CrossRefGoogle Scholar
  28. 28.
    Byeon, J.H., Sci. Rep., 2016, vol. 6, 27006.CrossRefGoogle Scholar
  29. 29.
    Rodionov, P.V., Veselova, I.A., and Shekhovtsova, T.N., Anal. Bioanal. Chem., 2014, vol. 406, p. 1531.CrossRefGoogle Scholar
  30. 30.
    Zikakis, J.P., Chitin, Chitosan and Related Enzymes, Orlando: Academic, 1984.Google Scholar
  31. 31.
    Stability and Stabilization of Biocatalysts, Balesteros, A., Plou, F.J., Iborra, J.L., and Holling, P.I., Eds., Ser.: Progress of Biotechnology, vol. 15, Amsterdam: Elsevier, 1998.Google Scholar
  32. 32.
    Decher, G., Science, 1997, vol. 277, p. 1232.CrossRefGoogle Scholar
  33. 33.
    Chitosan for Biomaterials, Jayakumar, R., Prabaharan, M., and Muzzarelly, R., Eds., Ser.: Advances in Polymer Science, vol. 243, Heidelberg: Springer, 2011.Google Scholar
  34. 34.
    Khmelnitsky, Yu.L., Levashov, A.V., Klyachko, N.L., and Martinek, K., Enzyme Microb. Technol., 1988, vol. 10, p. 710.CrossRefGoogle Scholar
  35. 35.
    Halling, P.J., Enzyme Microb. Technol., 1994, vol. 16, p. 178.CrossRefGoogle Scholar
  36. 36.
    Levitsky, V., Lozano, P., Gladilin, A., and Iborra, J.L., Prog. Biotechnol., 1998, vol. 5, p. 417.Google Scholar
  37. 37.
    Mozhaev, V.V., Kudryashova, E.V., Efremova, N.V., and Topchieva, I.N., Biotechnol. Tech., 1996, vol. 10, p. 849.CrossRefGoogle Scholar
  38. 38.
    Kudryashova, E.V., Gladilin, A.K., Vakurov, A.V., Heitz, F., Levashov, A.V., and Mozhaev, V.V., Biotechnol. Bioeng., 1997, vol. 55, p. 267.CrossRefGoogle Scholar
  39. 39.
    Shipovskov, S. and Levashov, A., Biotechnol. Bioeng., 2003, vol. 84, p. 258.CrossRefGoogle Scholar
  40. 40.
    Xu, K., Griebenov, K., and Klibanov, A.M., Biotechnol. Bioeng., 1997, vol. 56, p. 485.CrossRefGoogle Scholar
  41. 41.
    Griebenov, K. and Klibanov, A.M., Biotechnol. Bioeng., 1997, vol. 53, p. 351.CrossRefGoogle Scholar
  42. 42.
    Oleinik, L.I., Veselova, I.A., Rodionov, P.V., Budashov, I.A., and Shekhovtsova, T.N., Zavod. Lab., Diagn. Mater., 2011, vol. 77, no. 4, p. 23.Google Scholar
  43. 43.
    Payne, G.F., Chaubal, M.V., and Barbari, T.A., Polymer, 1996, vol. 37, p. 4643.CrossRefGoogle Scholar
  44. 44.
    Kumar, G., Bristow, J.F., Smith, P.J., and Payne, G.F., Polymer, 2000, vol. 41, p. 2157.CrossRefGoogle Scholar
  45. 45.
    Abdullah, J., Ahmad, M., Karuppiah, N., Heng, L.Y., and Sidek, H., Talanta, 2006, vol. 40, p. 527.CrossRefGoogle Scholar
  46. 46.
    Erdem, A., Pabuccuoglu, A., Meric, B., Kerman, K., and Osnoz, M., Turk. J. Med. Sci., 2000, vol. 30, p. 349.Google Scholar
  47. 47.
    Rodionov, P.V., Alieva, E.A., Sergeeva, E.A., Pavlova, M.E., Veselova, I.A., and Shekhovtsova, T.N., J. Anal. Chem., 2016, vol.71, no. 9, p. 932.CrossRefGoogle Scholar
  48. 48.
    Rogozhina, T.V. and Rogozhin, V.V., Issledovano Rossii, 2002, p. 767.Google Scholar
  49. 49.
    Madej, K., Kala, M., and Wozniakievicz, M., Chromatographia, 2005, vol. 62, p. 533.CrossRefGoogle Scholar
  50. 50.
    Pola, A., Michalak, K., Burliga, A., Motohashi, N., and Kawase, M., Eur. J. Pharm. Sci., 2004, vol. 21, p. 421.CrossRefGoogle Scholar
  51. 51.
    Gordeliy, V.I., Kiselev, M.A., Pole, A.V., and Teixeira, J., Biophys. J., 1998, vol. 75, p. 2343.CrossRefGoogle Scholar
  52. 52.
    Escribano, J., García-Cánovas, F., García-Carmona, F., and Losano, J.A., Biochim. Biophys. Acta, 1985, vol. 831, p. 313.CrossRefGoogle Scholar
  53. 53.
    Phenothiazines: Advances in Research and Application, Ashton Action, Q.J., Ed., Atlanta: Schlolarly Edition, 2012.Google Scholar
  54. 54.
    Yamini, Y. and Faraji, M., J. Pharm. Anal., 2014, vol. 4, p. 279.CrossRefGoogle Scholar
  55. 55.
    Nakano, M., Sugoika, K., Nakano, H., Takyu, C., and Inaba, H., Biochem. Biophys. Res. Commun., 1985, vol. 3, p. 952.CrossRefGoogle Scholar
  56. 56.
    Kelder, P.P., de Mol, N.J., Fischer, M.J.E., and Janssen, L.H.M., Biochim. Biophys. Acta, 1994, vol. 1205, p. 230.CrossRefGoogle Scholar
  57. 57.
    Ma, O., Lavertu, M., Sun, J., Nguyen, S., Buschmann, M.D., Winnik, F.M., and Hoemann, C.D., Carbohydr. Res., 2008, vol. 72, p. 616.CrossRefGoogle Scholar
  58. 58.
    Drexhage, K.H., J. Res., 1976, vol. 80, p. 421.Google Scholar
  59. 59.
    Park, S.A., Jang, E., Koh, W.G., and Kim, B., Sens. Actuators, B, 2010, vol. 150, p. 120.CrossRefGoogle Scholar
  60. 60.
    Rodionov, P.V., Veselova, I.A., and Shekhovtsova, T.N., J. Anal. Chem., 2013, vol. 68, no. 11, p. 931.CrossRefGoogle Scholar
  61. 61.
    Veselova, I.A., Malinina, L.I., Barsukova, M.E., Tokareva, A.I., Buslova, T.S., Pirogov, A.V., and She-khovtsova, T.N., Talanta, 2017, vol. 171, p. 108.CrossRefGoogle Scholar
  62. 62.
    Demiyanova, A.S. and Sakharov, I.Yu., Analyst, 2015, vol. 140, p. 2964.CrossRefGoogle Scholar
  63. 63.
    Vdovenko, M.M., Demiyanova, A.S., Kopylov, K.E., and Sakharov, I.Yu., Talanta, 2014, vol. 125, p. 361.CrossRefGoogle Scholar
  64. 64.
    Sakuragawa, A., Taniai, T., and Okutani, T., Anal. Chim. Acta, 1998, vol. 374, p. 191.CrossRefGoogle Scholar
  65. 65.
    Rubtsova, M.Y., Kovba, G.V., and Egorov, A.M., Biosens. Bioelectron., 1998, vol. 12, p. 75.CrossRefGoogle Scholar
  66. 66.
    Collaudin, A.B. and Blum, L.J., Sens. Actuators, B, 1997, vols. 38–39, p. 189.CrossRefGoogle Scholar
  67. 67.
    Porsh, H.E. and Wolfbeis, O.S., Microchim. Acta, 1989, vol. 1, p. 41.Google Scholar
  68. 68.
    Lobnik, A. and Cajlakovic, M., Sens. Actuators, B, 2001, vol. 74, p. 194.CrossRefGoogle Scholar
  69. 69.
    Hanko, M., Bruns, N., Tiller, J.C., and Heinze, J., Anal. Bioanal. Chem., 2006, vol. 386, p. 1273.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations