Skip to main content
Log in

Methodological Problems in the Replacement of Discrete Mass Spectrometric Models by Continuum Models

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstracts

Two problems of mass spectrometry, namely, involving the model of chemical kinetics of cluster formation and the model of the pseudopotential of stroboscopic samples of coordinates and ion velocities in quadrupole radio frequency fields, are considered as the examples in investigating the relationship between discrete models with finite-difference equations and continuum models with point derivatives. In developing continuum models, integer indices are replaced by real parameters, and finite-difference relations are replaced by approximate differential relations involving derivatives. It is shown that this procedure is not reliable: the discrete model and the continuum model can diverge globally, even if for intuitive reasons it is expected that the models should be close. As a result, the transfer of the conclusions obtained for the approximate continuum model to the exact physical model can lead to conceptually significant errors and requires the investigator to be careful. In particular, the continuum model of the chemical kinetics of cluster formation and the continuum model of the pseudopotential of stroboscopic samples of coordinates and ion velocities in quadrupole radio frequency fields, considered as an example, are both insolvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Semi-invariants (cumulates) are the statistical characteristics of the distribution of a random variable that are obtained by repeatedly differentiating Eqs. (6) and (12) with respect to the parameter ω at ω = 0, that is, by expanding the logarithm of the characteristic function of a random variable in the Taylor or Maclaurin series at ω = 0 [5356].

REFERENCES

  1. Semenov, N.N., Russ. Chem. Rev., 1967, vol. 36, no. 1, p. 1.

    Article  Google Scholar 

  2. Knorre, D.G. and Emanuel’, N.M., Kurs khimicheskoi kinetiki (Chemical Kinetics), Moscow: Vysshaya Shkola, 1984, 4th ed.

    Google Scholar 

  3. Kuni, F.M., Problems of condensation kinetics, Preprint Bogolyubov Inst. Theor. Phys., Kiev, 1983, no. 83-79Z.

  4. Bogdanov, A.V., Gorbachev, Yu.E., Dubrovskii, G.V., Itkin, F.L., and Kolesnichenko, E.G., Equilibrium solutions of the quasi-chemical condensation model, Preprint Ioffe Phys.-Tech. Inst., Leningrad, 1987, no. 1163.

  5. Berdnikov, A.S., Verenchikov, A.N., and Dubrovskii, V.G., in Nauchnoe priborostroenie. Formirovanie puchkov zaryazhennykh chastits. Sbornik nauchnykh trudov NTO AN SSSR (Scientific Instrumentation: Formation of Beams of Charged Particles. Collection of Scientific Works of the Scientific and Technical Department of the USSR Academy of Sciences), Leningrad: Nauka, 1990, p. 3.

    Google Scholar 

  6. Dubrovskii, V.G., in Nauchnoe priborostroenie. Formirovanie puchkov zaryazhennykh chastits. Sbornik nauchnykh trudov NTO AN SSSR (Scientific Instrumentation: Formation of Beams of Charged Particles. Collection of Scientific Works of the Scientific and Technical Department of the USSR Academy of Sciences), Leningrad: Nauka, 1990, p. 14.

    Google Scholar 

  7. Dubrovskii, V.G., Prikl. Mekh. Tekh. Fiz., 1990, vol. 49, no. 1, p. 3.

    Google Scholar 

  8. Dubrovskii, G.V., Dubrovskii, V.G., and Gorbachev, Yu.E., Nauchn. Priborostr., 1992, vol. 2, no. 4, p. 85.

    Google Scholar 

  9. Dubrovskii, V.G., Phys. Rev. E, 2017, vol. 95, no. 1, 012135.

    Article  CAS  PubMed  Google Scholar 

  10. Blinder, R., Stauffer, D., and Müller-Krumbhaar, H., Phys. Rev. B: Solid State, 1974, vol. 10, no. 9, p. 3853.

    Article  Google Scholar 

  11. Blinder, R., Stauffer, D., and Müller-Krumbhaar, H., Phys. Rev. B: Solid State, 1977, vol. 12, no. 11, p. 5261.

    Article  Google Scholar 

  12. Au-Yang, H. and McCoy, B.M., Phys. Rev. B: Solid State, 1974, vol. 10, no. 9, p. 3885.

    Article  Google Scholar 

  13. Stepanov, I.A., Nano Sci. Nano Technol.: Indian J., 2012, vol. 6, no. 3, p. 118.

    CAS  Google Scholar 

  14. Wasserman, F., Neural Computing: Theory and Practice, New York: Van Nostrand Reinhold, 1989.

    Google Scholar 

  15. Haykin, S., Neural Networks: A Comprehensive Foundation, Upper Saddle River, NJ: Prentice Hall, 2001.

    Google Scholar 

  16. Baxter, R., Exactly Solved Models in Statistical Mechanics, London: Academic, 1982.

    Google Scholar 

  17. Chaikin, P.M. and Lubensky, T.C., Principles of Condensed Matter Physics, Cambridge: Cambridge Univ. Press, 1995.

    Book  Google Scholar 

  18. Vorob’ev, N.N., Chisla Fibonachchi (Fibonacci Numbers), vol. 6 of Populyarnye lektsii po matematike (Popular Lectures on Mathematics), Moscow: Nauka, 1978, 4th ed.

  19. Markushevich, A.I., Vozvratnye posledovatel’nosti (Return Sequences), vol. 1 of Populyarnye lektsii po matematike (Popular Lectures on Mathematics), Moscow: Gos. Izd. Tekh. Teor. Lit., 1950.

  20. Knuth, D.E., The Art of Computer Programming, vol. 1: Fundamental Algorithms, Upper Saddle River, NJ: Addison-Wesley, 1997, 3rd ed.

    Google Scholar 

  21. Knuth, D.E., Graham, R.L., and Patashnik, O., Concrete Mathematics: A Foundation for Computer Science, Upper Saddle River, NJ: Addison-Wesley, 1994.

    Google Scholar 

  22. Cavalieri, B.F., Geometria indivisibilibus continuorum nova quadam ratione promota (Geometry Described by Means of Indivisible Continuous), Bologna: Clementis Ferronij, 1635.

    Google Scholar 

  23. Wieleitner, H., Die Geschichte der Mathematik von Descartes bis zum Hälfte des 19 Jahrhunderts (The History of Mathematics from Descartes to the Middle of the 19th Century), Berlin: Walter de Gruyter, 1923.

    Google Scholar 

  24. Boss, V., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), vol. 11 of Lektsii po matematike (Lectures on Mathematics), Moscow: Editorial URSS, 2016, 4th ed.

  25. Kebarle, P., Haynes, R.N., and Collins, J.G., J. Am. Chem. Soc., 1967, vol. 89, no. 23, p. 5753.

    Article  CAS  Google Scholar 

  26. Kebarle, P., Searles, S.K., Zolla, A., Scarborough, J., and Arshadi, M., J. Am. Chem. Soc., 1967, vol. 89, no. 25, p. 6393.

    Article  CAS  Google Scholar 

  27. Searcy, J.Q. and Fenn, J.B., J. Chem. Phys., 1974, vol. 61, no. 7, p. 5282.

    Article  CAS  Google Scholar 

  28. Searcy, J.Q., J. Chem. Phys., 1975, vol. 63, no. 10, p. 4114.

    Article  CAS  Google Scholar 

  29. Kambara, H. and Kanomata, I., Anal. Chem., 1977, vol. 49, p. 270.

    Article  CAS  Google Scholar 

  30. Kambara, H. and Kanomata, I., Int. J. Mass Spectrom. Ion Phys., 1977, vol. 25, no. 2, p. 129.

    Article  CAS  Google Scholar 

  31. Rebrov, A.K., in Molekulyarnaya i gazovaya dinamika. Sbornik nauchnykh trudov ITF SO AN SSSR (Molecular and Gas Dynamics: Collection of Scientific Papers of Inst. Theor. Phys., Sib. Branch, USSR Acad. Sci.), Novosibirsk: Inst. Teor. Fiz., Sib. Otd., Akad. Nauk SSSR, 1982, p. 58.

    Google Scholar 

  32. Krasnov, N.V., Kusner, Yu.S., Nikolaev, V.I., Prikhod’ko, V.G., and Shkurov, V.A., Zh. Tekh. Fiz., 1984, vol. 54, no. 11, p. 2212.

    CAS  Google Scholar 

  33. Gall’, L.N., Krasnov, N.V., Kusner, Yu.S., and Nikolaev, V.I., Pis’ma Zh. Exp. Tekh. Fiz., 1985, vol. 41, p. 203.

    Google Scholar 

  34. Kusner, Yu.S. and Aleksandrov, M.L., Gazodinamicheskie molekulyarnye, ionnye i klastirovannye puchki (Gas-Dynamic Molecular, Ion, and Clustered Beams), Velikhov, E.P., Ed., Leningrad: Nauka, 1989.

    Google Scholar 

  35. Krasnov, N.V., Cand. Sci. (Phys.–Math.) Dissertation, Leningrad: Inst. Anal. Instrumentation, USSR Acad. Sci., 1990.

  36. Balakin, A.A., Dodonov, A.F., Novikova, L.I., and Talrose, V.L., Rapid Commun. Mass Spectrom., 2001, vol. 15, no. 7, p. 489.

    Article  CAS  PubMed  Google Scholar 

  37. Zischang, J. and Suhm, M.A., J. Chem. Phys., 2013, vol. 139, no. 2, 024201.

    Article  CAS  PubMed  Google Scholar 

  38. Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., Shkurov, V.A., and Aleksandrov, M.L., Dokl. Akad. Nauk SSSR, Ser.: Fiz. Khim., 1983, vol. 277, no. 2, p. 379.

    Google Scholar 

  39. Gall’, L.N., Doctoral (Phys.–Math.) Dissertation, Leningrad: Leningrad. Polytech. Inst., Sci. Tech. Department of the USSR Acad. Sci., 1983.

  40. Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., Shkurov, V.A., and Aleksandrov, M.L., Zh. Tekh. Fiz., 1984, vol. 54, no. 8, p. 1559.

    Google Scholar 

  41. Nikolaev, V.I., Cand. Sci. (Phys.–Math.) Dissertation, Leningrad: Leningrad. Polytech. Inst., 1985.

  42. Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., Shkurov, V.A., Verenchikov, A.N., and Aleksandrov, M.L., in Mass-spektrometriya i khimicheskaya kinetika (Mass Spectrometry and Chemical Kinetics), Tal’roze, V.L., Ed., Moscow: Nauka, 1985, p. 314.

    Google Scholar 

  43. Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., Shkurov, V.A., and Aleksandrov, M.L., Zh. Anal. Khim., 1985, vol. 40, no. 6, p. 1160.

    Google Scholar 

  44. Dudnikov, V.G. and Shabalin, A.L., Electrohydrodynamic sources of ion beams, Preprint of the Inst. Nucl. Phys., Sib. Branch, USSR Acad. Sci., Novosibirsk, 1987, no. 87-63.

  45. Gall’, L.N., Verenchikov, A.N., Krasnov, N.V., Chuprikov, A.V., Babain, V.A., Shkurov, V.A., and Shadrin, A.Yu., in Nauchnoe priborostroenie. Metody i pribory biotekhnologii. Sbornik nauchnykh trudov NTO AN SSSR (Scientific Instrumentation: Methods and Devices of Biotechnology. Collection of Scientific Papers of the Scientific and Technical Department of the USSR Academy of Sciences), Leningrad: Nauka, 1988, p. 16.

    Google Scholar 

  46. Grigor’ev, A.I. and Shiryaeva, S.O., in Nauchnoe priborostroenie. Fizika analiticheskikh priborov. Sbornik nauchnykh trudov NTO AN SSSR (Scientific Instrumentation: Physics of Analytical Instruments. Collection of Scientific Papers of the Scientific and Technical Department of the USSR Academy of Sciences), Leningrad: Nauka, 1989, p. 28.

    Google Scholar 

  47. Koshlyakov, N.S., Osnovnye differentsial’nye uravneniya matematicheskoi fiziki (Fundamental Differential Equations of Mathematical Physics), Leningrad: Otd. Nauchn.-Tekh. Inf., 1936, 4th ed.

    Google Scholar 

  48. Koshlyakov, N.S., Gliner, E.B., and Smirnov, M.M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki (Equations in Partial Derivatives of Mathematical Physics), Moscow: Vysshaya Shkola, 1970.

    Google Scholar 

  49. Heer, C.V., Statistical Mechanics, Kinetic Theory, and Stochastic Processes, New York: Academic, 1972.

    Google Scholar 

  50. Levi, P., Stokhasticheskie protsessy i brounovskoe dvizhenie (Stochastic Processes and Brownian Motion), Moscow: Nauka, 1972.

    Google Scholar 

  51. Lifshits, E.M. and Pitaevskii, L.P., Fizicheskaya kinetika (Physical Kinetics), vol. 10 of Teoreticheskaya fizika (Theoretical Physics), Moscow: Nauka, 1979.

  52. Levich, V.G., Vdovin, Yu.A., and Myamlin, V.A., Kurs teoreticheskoi fiziki (Theoretical Physics), vol. 2: Kvantovaya mekhanika, kvantovaya statistika i fizicheskaya kinetika (Quantum Mechanics, Quantum Statistics, and Physical Kinetics), Moscow: Nauka, 1971, 2nd ed.

    Google Scholar 

  53. Matematicheskaya entsiklopediya (Mathematical Encyclopedia), Moscow: Sovetskaya entsiklopediya, 1977–1985.

  54. Leonov, V.P. and Shiryaev, A.N., Teor. Veroyatn. Ee Primen., 1959, vol. 4, no. 3, p. 342.

    Google Scholar 

  55. Prokhorov, Yu.V. and Rozanov, Yu.A., Teoriya veroyatnostei (Probability Theory), Ser.: Spravochnaya matematicheskaya biblioteka (Reference Mathematical Library), Moscow: Nauka, 1973, 2nd ed.

    Google Scholar 

  56. Malakhov, A.N., Kumulyantnyi analiz sluchainykh negaussovykh protsessov i ikh preobrazovanii (Cumulant Analysis of Random Non-Gaussian Processes and Their Transformation), Moscow: Sovetskoe Radio, 1978.

    Google Scholar 

  57. Hartley, R.V.L., Proc. IRE, 1942, vol. 30, no. 3, p. 144.

  58. Bracewell, R.N., The Hartley Transform, New York: Oxford Univ. Press, 1986.

    Google Scholar 

  59. Mitina, G.V., Yuzikhin, O.S., Isangalin, F.Sh., and Yakimov, A.P., Nauchn. Priborostr., 2012, vol. 22, no. 2, p. 3.

    CAS  Google Scholar 

  60. Mitina, G.V., Tokarev, Yu.S., and Uli-Mattila, T., Evraziat. Entomolog. Zh., 2013, vol. 12, no. 5, p. 431.

    Google Scholar 

  61. Mitina, G.V., Mikhailova, L.A., and Yli-Mattila, T., Arch. Phytopathol. Plant Prot., 2008, vol. 41, no. 2, p. 113.

    Article  CAS  Google Scholar 

  62. Mitina, G.V. and Yli-Mattila, T., J. Russ. Phytopathol. Soc., 2002, vol. 3, p. 7.

    Google Scholar 

  63. Sudakov, M.Yu. and Apatskaya, M.V., JETP, 2012, vol. 115, no. 2, p. 194.

    Article  CAS  Google Scholar 

  64. McLachlan, N.W., Theory and Applications of Mathieu Functions, Oxford: Clarendon, 1947.

    Google Scholar 

  65. Bondarenko, G.V., Uravnenie Khilla i ego primenenie v oblasti tekhnicheskikh kolebanii (The Hill Equation and Its Application in the Field of Technical Oscillations), Moscow: Akad. Nauk SSSR, 1936.

    Google Scholar 

  66. Yakubovich, V.A. and Starzhinskii, V.M., Lineinye differentsial’nye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya (Linear Differential Equations with Periodic Coefficients and Their Applications), Moscow: Nauka, 1972.

    Google Scholar 

  67. Slobodenyuk, G.I., Kvadrupol’nye mass-spektrometry (Quadrupole Mass Spectrometers), Moscow: Atomizdat, 1974.

    Google Scholar 

  68. Quadrupole Mass Spectrometry and Its Applications, Dawson, P.H., Ed., Amsterdam: Elsevier, 1976.

    Google Scholar 

  69. Dawson, P.H., Adv. Electron. Electron Phys., 1980, vol. 53, p. 153.

    Article  Google Scholar 

  70. March, R.E. and Hughes, R.J., Quadrupole Storage Mass Spectrometry, New York: Wiley, 1989.

    Google Scholar 

  71. Konenkov, N.V., Sudakov, M., and Douglas, D.J., J. Am. Soc. Mass Spectrom., 2002, vol. 13, no. 6, p. 597.

    Article  CAS  PubMed  Google Scholar 

  72. Verentchikov, A., Berdnikov, A., and Yavor, M., Phys. Procedia, 2008, vol. 1, p. 87.

    Article  CAS  Google Scholar 

  73. Douglas, D.J., Berdnikov, A.S., and Konenkov, N.V., Int. J. Mass Spectrom. Ion Processes, 2015, vol. 377, p. 345.

    Article  CAS  Google Scholar 

  74. Berdnikov, A.S., Douglas, D.J., and Konenkov, N.V., Int. J. Mass Spectrom. Ion Processes, 2017 (in press).

  75. Boss, V., Lektsii po teorii upravleniya (Lectures on the Theory of Management), 2 vols., Moscow: Editorial URSS, Lenand, 2014.

  76. Sudakov, M.Yu. and Mamontov, E.V., Tech. Phys., 2016, vol. 61, no. 11, p. 1715.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Ministry of Education and Science of the Russian Federation, grant no. 3.9506.2017/VSN, and the Russian Foundation for Basic Research, project no. 07-17-00418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Berdnikov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berdnikov, A.S., Verentchikov, A.N. & Konenkov, N.V. Methodological Problems in the Replacement of Discrete Mass Spectrometric Models by Continuum Models. J Anal Chem 73, 1229–1241 (2018). https://doi.org/10.1134/S1061934818130026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934818130026

Keywords:

Navigation