Advertisement

Journal of Analytical Chemistry

, Volume 73, Issue 10, pp 937–945 | Cite as

New Chiral Stationary Phases: Preparation, Properties, and Applications in Gas Chromatography

  • V. Yu. Gus’kovEmail author
  • V. N. Maistrenko
REVIEWS

Abstract

This review surveys chiral chromatographic phases, their properties and preparation methods, and applicability to gas chromatography. New chiral chromatographic phases based on cyclodextrins, ionic liquids, liquid crystals, cyclofructans, etc., are considered. Chiral stationary phases obtained with the use of nanomaterials (structured polymers, including those with molecular traps and molecular imprints, organometallic structures with different types of chirality, and chiral stationary phases based on supramolecular self-assembling structures with induced chirality) are considered separately. It is shown that the chiral phases based on nanomaterials exhibit high enantioselectivity for difficult-to-separate racemates.

Keywords:

gas chromatography monolithic capillary columns polymers with molecular imprints chiral ionic liquids carbon nanotubes supramolecular structures with induced chirality enantiomers 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 17-73-10181.

REFERENCES

  1. 1.
    Xie, S.M. and Yuan, L.M., J. Sep. Sci., 2017, vol. 40, no. 1, p. 124.CrossRefPubMedGoogle Scholar
  2. 2.
    Ilisz, I., Berkecz, R., and Péter, A., J. Sep. Sci., 2006, vol. 29, p. 1305.CrossRefPubMedGoogle Scholar
  3. 3.
    Ya, H., Two-Dimensional (2D) Functional Molecular Networks, London: Univ. College of London, 2016.Google Scholar
  4. 4.
    Gil-Av, E. and Feibush, B., Tetrahedron Lett., 1967, vol. 8, no. 35, p. 3345.CrossRefGoogle Scholar
  5. 5.
    Gil-Av, E., Feibush, B., and Charles-Sigler, R., Tetrahedron Lett., 1966, vol. 7, no. 10, p. 1009.CrossRefGoogle Scholar
  6. 6.
    Myrgorodska, I., Javelle, T., Meinert, C., and Meierhenrich, U.J., Isr. J. Chem., 2016, vol. 56, nos. 11–12, p. 1016.CrossRefGoogle Scholar
  7. 7.
    Schurig, V., J. Chromatogr. A, 2001, vol. 906, p. 275.CrossRefPubMedGoogle Scholar
  8. 8.
    Gus’kov, V.Y., Gainullina, Y.Y., Suhareva, D.A., Sidel’nikov, A.V., and Kudasheva, F.K., Int. J. Appl. Chem., 2016, vol. 12, no. 3, p. 359.Google Scholar
  9. 9.
    Chen, L.J., Reiss, P.S., Chong, S.Y., Holden, D., Jelfs, K.E., Hasell, T., Little, M.A., Kewley, A., Briggs, M.E., Stephenson, A., Thomas, K.M., Armstrong, J.A., Bell, J., Busto, J., Noel, R., Liu, J., Strachan, D.M., Thallapally, P.K., and Cooper, A.I., Nat. Mater., 2014, vol. 13, p. 954.CrossRefPubMedGoogle Scholar
  10. 10.
    Song, Y.-M., Zhou, T., Wang, X.-S., Li, X.-N., and Xiong, R.-G., Cryst. Growth Des., 2006, vol. 6, no. 1, p. 14.CrossRefGoogle Scholar
  11. 11.
    Meinert, C. and Meierhenrich, U.J., ChemPlusChem., 2014, vol. 79, no. 6, p. 781.CrossRefGoogle Scholar
  12. 12.
    Freissinet, C., Buch, A., Szopa, C., and Sternberg, R., J. Chromatogr. A, 2013, vol. 1306, p. 59.CrossRefPubMedGoogle Scholar
  13. 13.
    Schurig, V., Angew. Chem., Int. Ed. Engl., 1977, vol. 16, no. 2, p. 110.CrossRefGoogle Scholar
  14. 14.
    Schurig, V. and Betschinger, F., Chem. Rev., 1992, vol. 92, no. 5, p. 873.CrossRefGoogle Scholar
  15. 15.
    Smolkova-Keulemansova, E., J. Chromatogr. A, 1982, vol. 251, p. 17.CrossRefGoogle Scholar
  16. 16.
    Koscielski, T., Sybilska, D., and Jurczak, J., J. Chromatogr. A, 1983, vol. 280, p. 131.CrossRefGoogle Scholar
  17. 17.
    Schurig, V., J. Chromatogr. A, 1988, vol. 44, p. 135.CrossRefGoogle Scholar
  18. 18.
    Venema, A., Henderiks, H., and Geest, R.V., J. High Resolut. Chromatogr., 1991, vol. 14, p. 676.CrossRefGoogle Scholar
  19. 19.
    Schurig, V. and Kreidler, D., in Chiral Separations: Methods and Protocols, Scriba, E.G.K., Ed., Totowa, NJ: Humana, 2013, p. 45.Google Scholar
  20. 20.
    Lee, I., Gopalan, A.-I., and Lee, K.-P., Int. J. Environ. Res. Public Health, 2016, vol. 13, no. 3, p. 349.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Pragadheesh, V.S., Yadav, A., and Chanotiya, C.S., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2015, vol. 1002, p. 30.CrossRefGoogle Scholar
  22. 22.
    Fox, S., Strasdeit, H., Haasmann, S., and Brückner, H., J. Chromatogr. A, 2015, vol. 1411, p. 101.CrossRefPubMedGoogle Scholar
  23. 23.
    Kaffarnik, S., Heid, C., Kayademir, Y., Eibler, D., and Vetter, W., J. Agric. Food Chem., 2015, vol. 63, no. 2, p. 469.CrossRefPubMedGoogle Scholar
  24. 24.
    Tang, W., Ng, S.-C., and Sun, D., Modified Cyclodextrins for Chiral Separation, Berlin: Springer, 2013.CrossRefGoogle Scholar
  25. 25.
    Pragadheesh, V.S., Yadav, A., Singh, M., and Chanotiya, C.S., Nat. Prod. Commun., 2013, vol. 8, no. 2, p. 221.PubMedGoogle Scholar
  26. 26.
    Xiao, Y., Ng, S.-C., Tan, T.T.Y., and Wang, Y., J. Chromatogr. A, 2012, vol. 1269, p. 52.CrossRefPubMedGoogle Scholar
  27. 27.
    Shen, G., Cui, J., Yang, X., and Ling, Y., J. Sep. Sci., 2009, vol. 32, no. 1, p. 79.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhou, M.-Y., Ling, Y., Shen, G.-Y., and Yang, X.-L., Chem. J. Chin. Univ., 2008, vol. 29, no. 3, p. 493.Google Scholar
  29. 29.
    Adly, F.G., Antwi, N.Y., and Ghanem, A., Chirality, 2016, vol. 28, no. 2, p. 97.CrossRefPubMedGoogle Scholar
  30. 30.
    Yuan, R., Wang, Y., and Ding, G., Anal. Sci., 2009, vol. 26, p. 943.CrossRefGoogle Scholar
  31. 31.
    Chen Z., Ozawa, H., Uchiyama, K., and Hobo, T., Electrophoresis, 2003, vol. 24, p. 2550.CrossRefPubMedGoogle Scholar
  32. 32.
    Wistuba, D. and Schurig, V., Electrophoresis, 2000, vol. 21, p. 3152.CrossRefPubMedGoogle Scholar
  33. 33.
    Khrimian, A. and Crook, D.J., J. Nat. Prod., 2011, vol. 74, no. 6, p. 1414.CrossRefPubMedGoogle Scholar
  34. 34.
    Huang, K. and Armstrong, D.W., Org. Geochem., 2009, vol. 40, no. 2, p. 283.CrossRefGoogle Scholar
  35. 35.
    Zhang, X., Zhang, C., Sun, G., Xu, X., Tan, Y., Wu, H., Cao, R., Liu, J., and Wu, J., Instrum. Sci. Technol., 2012, vol. 40, p. 194.CrossRefGoogle Scholar
  36. 36.
    Noge, K., Shimizu, N., and Becerra, J.X., Nat. Prod. Commun., 2010, vol. 5, no. 3, p. 351.PubMedGoogle Scholar
  37. 37.
    Panto, S., Sciarrone, D., Maimone, M., Ragonese, C., Giofre, S., Donato, P., Farnetti, S., and Mondello, L., J. Chromatogr. A, 2015, vol. 1417, p. 96.CrossRefPubMedGoogle Scholar
  38. 38.
    Martínez, R.M., Barba, C., Santa-María, G., and Herraiz, M., Anal. Methods, 2016, vol. 8, no. 7, p. 1505.CrossRefGoogle Scholar
  39. 39.
    Shi, X., Liu, F., and Bian, Q., Chin. J. Chromatogr., 2016, vol. 34, no. 1, p. 85.CrossRefGoogle Scholar
  40. 40.
    Vetter, W., Isr. J. Chem., 2016, vol. 56, nos. 11–12, p. 940.CrossRefGoogle Scholar
  41. 41.
    Kania-Korwel, I., Vyas, S.M., Song, Y., and Lehmler, H.-J., J. Chromatogr. A, 2008, vol. 1207, p. 146.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bordajandi, L.R., Abad, E., and González, M.J., Chemosphere, 2008, vol. 70, p. 567.CrossRefPubMedGoogle Scholar
  43. 43.
    Kania-Korwel, I., Hornbuckle, K.C., Robertson, L.W., and Lehmler, H.-J., Environ. Toxicol. Chem., 2008, vol. 27, no. 2, p. 299.CrossRefPubMedGoogle Scholar
  44. 44.
    Cagliero, C., Sgorbini, B., Cordero, C., Liberto, E., Rubiolo, P., and Bicchi, C., Isr. J. Chem., 2016, vol. 56, nos. 11–12, p. 925.CrossRefGoogle Scholar
  45. 45.
    D’Acampora Zellner, B., Bicchi, C., Dugo, P., Rubiolo, P., Dugo, G., and Mondello, L., Flavour Fragrance J., 2008, vol. 23, no. 5, p. 297.CrossRefGoogle Scholar
  46. 46.
    Zhang, Y., Breitbach, Z.S., Wang, C., and Armstrong, D.W., Analyst, 2010, vol. 135, p. 1076.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang, Y. and Armstrong, D.W., Analyst, 2011, vol. 136, p. 2931.CrossRefPubMedGoogle Scholar
  48. 48.
    Jiang, C., Tong, M., Breitbach, Z.S., and Armstrong, D.W., Electrophoresis, 2009, vol. 30, p. 3897.CrossRefPubMedGoogle Scholar
  49. 49.
    Poole, C.F. and Lenca, N., J. Chromatogr. A, 2014, vol. 1357, p. 87.CrossRefPubMedGoogle Scholar
  50. 50.
    Katritzky, A.R., Jain, R., Lomaka, A., Petrukhin, R., Karelson, M., Visser, A.E., and Rogers, R.D., J. Chem. Inf. Comput. Sci., 2002, vol. 42, no. 2, p. 225.CrossRefPubMedGoogle Scholar
  51. 51.
    Ding, J., Welton, T., and Armstrong, D.W., Anal. Chem., 2004, vol. 76, no. 22, p. 6819.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhao, L., Ai, P., Duan, A.-H., and Yuan, L.-M., Anal. Bioanal. Chem., 2011, vol. 399, no. 1, p. 143.CrossRefPubMedGoogle Scholar
  53. 53.
    Kapnissi-Christodoulou, C.P., Stavrou, I.J., and Mavroudi, M.C., J. Chromatogr. A, 2014, vol. 1363, p. 2.CrossRefPubMedGoogle Scholar
  54. 54.
    Sun, X., Xu, J., Zhao, X., Zhai, Y., and Xing, J., Chromatographia, 2013, vol. 76, nos. 15–16, p. 1013.CrossRefGoogle Scholar
  55. 55.
    Kimaru, I.W., Morris, L., Vassiliou, J., and Savage, N., J. Mol. Liq., 2017, vol. 237, p. 193.CrossRefGoogle Scholar
  56. 56.
    Huang, K., Zhang, X., and Armstrong, D.W., J. Chromatogr. A, 2010, vol. 1217, p. 5261.CrossRefPubMedGoogle Scholar
  57. 57.
    Costa, N., Matos, S., Gomes da Silva, M.D.R., and Pereira, M.M.A., ChemPlusChem., 2013, vol. 78, no. 12, p. 1466.CrossRefGoogle Scholar
  58. 58.
    Grajek, H., Witkiewicz, Z., Purchała, M., and Drzewinski, W., Chromatographia, 2016, vol. 79, nos. 19–20, p. 1217.Google Scholar
  59. 59.
    Onuchak, L.A., Stepanova, R.F., Akopova, O.B., Glebova, O.V., and Chermova, O.M., Russ. J. Phys. Chem. A, 2008, vol. 82, p. 893.CrossRefGoogle Scholar
  60. 60.
    Ocak, H., Mutlu-Yanic, S., Cakar, F., Bilgin-Eran, B., Guzeller, D., Karaman, F., and Cankurtaran, O., J. Mol. Liq., 2016, vol. 223, p. 861.CrossRefGoogle Scholar
  61. 61.
    Tugareva, D.A., Kuraeva, Yu.G., Onuchak, L.A., Kapralova, T.S., Kuvshinova, S.A., and Burmistrov, V.A., Zhidk. Krist. Ikh Prakt. Ispol’z., 2016, vol. 16, no. 2, p. 52.Google Scholar
  62. 62.
    Bykov, E.S., Kopytin, K.A., and Onuchak, L.A., Zhidk. Krist. Ikh Prakt. Ispol’z., 2016, vol. 16, no. 3, p. 87.Google Scholar
  63. 63.
    Onuchak, L.A., Burmatnova, T.S., Stepanova, R.F., Kuraeva, Yu.G., and Tyurina, E.S., Zhidk. Krist. Ikh Prakt. Ispol’z., 2012, vol. 41, no. 3, p. 58.Google Scholar
  64. 64.
    Onuchak, L.A., Kapralova, T.S., Kuraeva, Yu.G., Belousova, Z.P., and Stepanova, R.F., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 12, p. 2304.CrossRefGoogle Scholar
  65. 65.
    Onuchak, L.A., Tugareva, D.A., Kapralova, T.S., Kuraeva, Yu.G., Kuvshinova, S.A., and Burmistrov, V.A., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 6, p. 944.CrossRefGoogle Scholar
  66. 66.
    Onuchak, L.A., Burmatnova, T.S., Spiryaeva, E.A., Kuraeva, Yu.G., and Belousova, Z.P., Russ. J. Phys. Chem. A, 2012, vol. 86, no. 8, p. 1308.CrossRefGoogle Scholar
  67. 67.
    Chang, C., Wang, X., Bai, Y., and Liu, H., TrAC, Trends Anal. Chem., 2012, vol. 39, p. 195.CrossRefGoogle Scholar
  68. 68.
    Dong, J.Q., Liu, Y., and Cui, Y., Chem. Commun., 2014, vol. 50, p. 14949.CrossRefGoogle Scholar
  69. 69.
    Qian, H.-L., Yang, C.-X., and Yan, X.-P., Nat. Commun., 2016, vol. 7.Google Scholar
  70. 70.
    Zhang, J.H., Xie, S.M., Chen, L., Wang, B.J., He, P.C., and Yuan, L.M., Anal. Chem., 2015, vol. 87, p. 7817.CrossRefPubMedGoogle Scholar
  71. 71.
    Xie, S.M., Zhang, J.H., Fu, N., Wang, B.J., Chen, L., and Yuan, L.M., Anal. Chim. Acta, 2016, vol. 903, p. 156.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhang, J.H., Xie, S.M., Wang, B.J., He, P.G., and Yuan, L.M., J. Chromatogr. A, 2015, vol. 1426, p. 174.CrossRefPubMedGoogle Scholar
  73. 73.
    Xie, S.M., Zhang, X.H., Zhang, Z.J., Zhang, M., Jia, J., and Yuan, L.M., Anal. Bioanal. Chem., 2013, vol. 405, p. 3407.CrossRefPubMedGoogle Scholar
  74. 74.
    Xue, X.D., Zhang, M., Xie, S.M., and Yuan, L.M., Acta Chromatogr., 2015, vol. 27, p. 15.CrossRefGoogle Scholar
  75. 75.
    Xie, S.M., Zhang, M., Fei, Z.X., and Yuan, L.M., J. Chromatogr. A, 2014, vol. 1363, p. 137.CrossRefPubMedGoogle Scholar
  76. 76.
    Xie, S.M., Zhang, X.H., Wang, B.J., Zhang, M., Zhang, J.H., and Yuan, L.M., Chromatographia, 2014, vol. 77, p. 1359.CrossRefGoogle Scholar
  77. 77.
    Gus’kov, V.Yu., Sukhareva, D.A., Arslanova, I.V., and Musabirov, D.E., J. Anal. Chem., 2017, vol. 72, no. 10, p. 1089.CrossRefGoogle Scholar
  78. 78.
    Gus’kov, V.Yu., Gainullina, Yu.Yu., and Kudasheva, F.Kh., Analitika Kontrol’, 2014, vol. 18, no. 2, p. 178.Google Scholar
  79. 79.
    Ding, S.Y. and Wang, W., Chem. Soc. Rev., 2013, vol. 42, p. 548.CrossRefPubMedGoogle Scholar
  80. 80.
    Na, N., Hu, Y., Ouyang, J., Baeyens, W.R.G., Delanghe, J.R., and Beer, T.D., Anal. Chim. Acta, 2004, vol. 527, no. 2, p. 139.CrossRefGoogle Scholar
  81. 81.
    Xu, H., Gao, J., and Jiang, D., Nat. Chem., 2015, vol. 7, no. 11, p. 905.CrossRefPubMedGoogle Scholar
  82. 82.
    Liu, X., Liu, Y., Li, G., and Warmuth, R., Angew. Chem., Int. Ed. Engl., 2006, vol. 45, p. 901.CrossRefGoogle Scholar
  83. 83.
    Jin, Y., Voss, B.A., Noble, R.D., and Zhang, W., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, p. 6348.CrossRefGoogle Scholar
  84. 84.
    Kulsing, C., Knob, R., and Macka, M., J. Chromatogr. A, 2014, vol. 1354, p. 85.CrossRefPubMedGoogle Scholar
  85. 85.
    Ansell, R.J., Adv. Drug Delivery Rev., 2005, vol. 57, no. 12, p. 1809.CrossRefGoogle Scholar
  86. 86.
    Maier, N.M. and Lindner, W., Anal. Bioanal. Chem., 2007, vol. 389, no. 2, p. 377.CrossRefPubMedGoogle Scholar
  87. 87.
    Hasell, T., Little, M.A., Chong, S.Y., Schmidtmann, M., Briggs, M.E., Santolini, V., Jelfs, K.E., and Cooper, A.I., Nanoscale, 2017, vol. 9, no. 20, p. 6783.CrossRefPubMedGoogle Scholar
  88. 88.
    Peluso, P., Mamane, V., and Cossu, S., J. Chromatogr. A, 2014, vol. 1363, p. 11.CrossRefPubMedGoogle Scholar
  89. 89.
    Li, G., Yu, W., Ni, J., Liu, T., Liu, Y., Sheng, E., and Cui, Y., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, no. 7, p. 1245.CrossRefGoogle Scholar
  90. 90.
    Li, G., Yu, W., and Cui, Y., J. Am. Chem. Soc., 2008, vol. 130, no. 14, p. 4582.CrossRefPubMedGoogle Scholar
  91. 91.
    Bisht, K.K. and Suresh, E., J. Am. Chem. Soc., 2013, vol. 135, no. 42, p. 15690.CrossRefPubMedGoogle Scholar
  92. 92.
    Pérez-García, L. and Amabilino, D.B., Chem. Soc. Rev., 2007, vol. 36, no. 6, p. 941.CrossRefPubMedGoogle Scholar
  93. 93.
    Xie, S.M., Zhang, Z.J., Wang, Z.Y., and Yuan, L.M., J. Am. Chem. Soc., 2011, vol. 133, p. 11892.CrossRefPubMedGoogle Scholar
  94. 94.
    Xie, S.M., Zhang, Z.J., and Yuan, L.M., Chem. J. Chin. Univ., 2014, vol. 35, p. 1652.Google Scholar
  95. 95.
    Ranford, J.D., Vittal, J.J., Wu, D., and Yang, X., Angew. Chem., Int. Ed. Engl., 1999, vol. 38, no. 23, p. 3498.CrossRefGoogle Scholar
  96. 96.
    Lackinger, M. and Heckl, W.M., Langmuir, 2009, vol. 25, no. 19, p. 11307.CrossRefPubMedGoogle Scholar
  97. 97.
    Seto, C.T., Mathias, J.P., and Whitesides, G.M., J. Am. Chem. Soc., 1993, vol. 115, no. 4, p. 1321.CrossRefGoogle Scholar
  98. 98.
    Seto, C.T. and Whitesides, G.M., J. Am. Chem. Soc., 1993, vol. 115, no. 4, p. 1330.CrossRefGoogle Scholar
  99. 99.
    Mathias, J.P., Seto, C.T., Simanek, E.E., and Whitesides, G.M., J. Am. Chem. Soc., 1994, vol. 116, no. 5, p. 1725.CrossRefGoogle Scholar
  100. 100.
    Mathias, J.P., Simanek, E.E., and Whitesides, G.M., J. Am. Chem. Soc., 1994, vol. 116, no. 10, p. 4326.CrossRefGoogle Scholar
  101. 101.
    Mathias, J.P., Simanek, E.E., Zerkowski, J.A., Seto, C.T., and Whitesides, G.M., J. Am. Chem. Soc., 1994, vol. 116, no. 10, p. 4316.CrossRefGoogle Scholar
  102. 102.
    Cheng, X., Gao, Q., Smith, R.D., Simanek, E.E., Mammen, M., and Whitesides, G.M., Org. Chem., 1996, vol. 61, no. 6, p. 2204.CrossRefGoogle Scholar
  103. 103.
    Cetina, M., Benci, K., Wittine, K., and Mintas, M., Cryst. Growth Des., 2012, vol. 12, p. 5262.CrossRefGoogle Scholar
  104. 104.
    Feher, R., Wurst, K., Amabilino, D.B., and Veciana, J., Inorg. Chim. Acta, 2008, vol. 361, p. 4094.CrossRefGoogle Scholar
  105. 105.
    Borowiak, T., Dutkiewicz, G., and Spychala, J., Acta Crystallogr., 2007, vol. C63, p. 201.Google Scholar
  106. 106.
    Fujiki, M., Symmetry, 2014, vol. 6, p. 677.CrossRefGoogle Scholar
  107. 107.
    Vera, F., Serrano, J.L., Santo, M.P.D., Barberi, R., Rosa, M.B., and Sierra, T., J. Mater. Chem., 2012, vol. 22, p. 18025.CrossRefGoogle Scholar
  108. 108.
    Tejedor, R.M., Oriol, L., Serrano, J.L., Urena, F.P., and González, J.J.L., Adv. Funct. Mater., 2007, vol. 17, p. 3486.CrossRefGoogle Scholar
  109. 109.
    Ruiz, U., Pagliusi, P., Provenzano, C., Shibaev, V.P., and Cipparrone, G., Adv. Funct. Mater., 2012, vol. 22, p. 2964.CrossRefGoogle Scholar
  110. 110.
    Bruin, A.G.D., Barbour, M.E., and Briscoe, W.H., Polym. Int., 2014, vol. 63, p. 165.CrossRefGoogle Scholar
  111. 111.
    Shen, Z., Wang, T., and Liu, M., Angew. Chem., Int. Ed. Engl., 2014, vol. 53, p. 13424.CrossRefGoogle Scholar
  112. 112.
    Katsonis, N., Xu, H., Haak, R.M., Kudernac, T., Tomovic, Z., George, S., Auweraer, M.V.D., Schenning, A.P.H.J., Meijer, E.W., Feringa, B.L., and Feyter, S.D., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, p. 4997.CrossRefGoogle Scholar
  113. 113.
    Zhang, L., Qin, L., Wang, X., Cao, H., and Liu, M., Adv. Mater., 2014, vol. 26, p. 6959.CrossRefPubMedGoogle Scholar
  114. 114.
    Mineo, P., Villari, V., Scamporrinoa, E., and Micalib, N., Soft Matter, 2014, vol. 10, p. 44.CrossRefPubMedGoogle Scholar
  115. 115.
    Ohta, E., Sato, H., Ando, S., Kosaka, A., Fukushima, T., Hashizume, D., Yamasaki, M., Hasegawa, K., Muraoka, A., Ushiyama, H., Yamashita, K., and Aida, T., Nat. Chem., 2010, vol. 3, p. 68.CrossRefPubMedGoogle Scholar
  116. 116.
    Kondepudi, D.K., Digits, J., and Bullock, K., Chirality, 1995, vol. 7, p. 62.CrossRefGoogle Scholar
  117. 117.
    Kondepudi, D.K. and Asakura, K., Acc. Chem. Res., 2001, vol. 34, p. 946.CrossRefPubMedGoogle Scholar
  118. 118.
    Kondepudi, D.K., Int. J. Quantum Chem., 2004, vol. 98, p. 222.CrossRefGoogle Scholar
  119. 119.
    Kawasaki, T., Suzuki, K., Hakoda, Y., and Soai, K., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, p. 496.CrossRefGoogle Scholar
  120. 120.
    Silly, F., Shaw, A.Q., Castell, M.R., and Briggs, G.A.D., Chem. Commun., 2008, p. 1907.Google Scholar
  121. 121.
    Sun, X., Jonkman, H.T., and Silly, F., Nanotecnology, 2010, vol. 21, p. 165602.CrossRefGoogle Scholar
  122. 122.
    Gardener, J.A., Shvarova, O.Y., Briggs, G.A.D., and Castell, M.R., J. Phys. Chem. C, 2010, vol. 114, p. 5859.CrossRefGoogle Scholar
  123. 123.
    Zhang, H.-M., Xie, Z.-X., Long, L.-S., Zhong, H.-P., Zhao, W., Mao, B.-W., Xu, X., and Zheng, L.-S., J. Phys. Chem. C, 2008, vol. 112, p. 4209.CrossRefGoogle Scholar
  124. 124.
    Gus’kov, V.Y., Sidelnikov, A.V., Sukhareva, D.A., Gai-nullina, Y.Y., Kudasheva, F.K., and Maistrenko, V.N., Sorbtsionnye Khromatogr. Protsessy, 2016, vol. 16, no. 6, p. 280.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Chemistry, Bashkir State UniversityUfaRussia

Personalised recommendations