Skip to main content

An Experimental Design Approach for Optimization of Spectrophotometric Estimation of Mirabegron in Bulk and Pharmaceutical Formulations

Abstract

Three simple, low-cost, sensitive and diversely applicable UV-Vis spectrophotometric methods have been developed for the estimation of drug Mirabegron. Method A is based on the reaction of Mirabegron with ninhydrin in the presence of sodium molybdate at pH 5.5. Method B is based on the reaction of the drug with 1,2-napthaquinone-4-sulphonate and cetyltrimethyl ammonium bromide in an alkaline medium. Method C is based on a redox reaction of the drug with Folin–Ciocalteu reagent in sodium carbonate medium. Beer’s law was obeyed in the concentration ranges of 2.5–22.5, 5–35, and 5–70 μg/mL for methods A, B, and C. The proposed methods can be applied to drug formulation and recommended for the routine analysis in quality control laboratories.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Takasu, T., Ukai, M., Sato, S., Matsui, T., Nagase, I., Maruyama, T., Sasamata, M., and Uchida, H., J. Pharmacol. Exp. Ther., 2007, vol. 32, p. 642.

    Article  CAS  Google Scholar 

  2. 2

    Coyne, K.S., Matza, L.S., Thompson, C., Jumadilova, Z., and Bavendam, T., Neurourol. Urodyn., 2007, vol. 26, p. 196.

    Article  PubMed  Google Scholar 

  3. 3

    Tyagi, P., Tyagi, V., Yoshimura, N., Chancellor, M., and Yamaguchi, O., Drugs. Fut., 2009, vol. 34, p. 635.

    Article  CAS  Google Scholar 

  4. 4

    Van Teijingen, E.R., Meijer, J., Takusagawa, S., Van Gelderen, M., and van den Beld, C., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2012, vol. 888, p. 102.

    Article  CAS  Google Scholar 

  5. 5

    Bhimanadhuni, C.N. and Garikapati, D.R., Am. J. PharmTech Res., 2012, vol. 2, p. 564.

    Google Scholar 

  6. 6

    Nagaraja, P., Shreshta, A.K., Shivakumar, A., Saeed, Al., and Tayar, N.G., J. Food. Drug Anal., 2011, vol. 19, p. 85.

    CAS  Google Scholar 

  7. 7

    Roopa, K.P., Jayanna, B.K., and Nagaraja, P., Int. J. Pharm. Pharm. Sci., 2015, vol. 7, p. 194.

    Google Scholar 

  8. 8

    Rania, A.S., Wafaa, S.H., Magda, Y.E., and Abdalla, S., Am. Chem. Sci. J., 2013, vol. 3, p. 514.

    Article  Google Scholar 

  9. 9

    Saleh, M.S., Youseef, A.K., Hasheem, E.Y., and Abdel-Kader, D.A., Comput. Chem., 2014, vol. 2, p. 22.

    Article  CAS  Google Scholar 

  10. 10

    Ajima, U. and Onah, J.O., J. Appl. Pharm. Sci., 2015, vol. 5, p. 65.

    Article  CAS  Google Scholar 

  11. 11

    Vijayakumar, B. and Venkateshwarlu, World J. Pharm. Pharm. Sci., 2015, vol. 5, p. 911.

    Google Scholar 

  12. 12

    Cheenu, G., Richa, P., Afzal, H., and Subheet, J., Eurasian. J. Anal. Chem., 2013, vol. 8, p. 90.

    Google Scholar 

  13. 13

    Patil, V.P., Devdhe, S.J., Angadi, S.S., Shlke, S.D., Jadhav, V.R., Kawde, R.V., and Kale, S.H., Asian J. Biomed. Pharm. Sci., 2012, vol. 3, p. 14.

    Google Scholar 

  14. 14

    Nagaraja, P., Srinivasa Murthy, K.C., and Yathirajan, H.S., Talanta, 1996, vol. 43, p. 1075.

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Ahmed, S.M.A., Elbashir, A.A., and Aboul-Enein, H.Y., Appl. Spectrosc. Rev., 2012, vol. 47, p. 219.

    Article  CAS  Google Scholar 

  16. 16

    Nagaraja, P., Srinivasa Murthy, K.C., and Rangappa, K.S., J. Pharm. Biomed. Anal., 1998, vol. 17, p. 501.

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Sara, A.M., Ebrahim Alawia, H.E., Elwagee Hassan, Y., and Aboul-Enein, Acta Chim. Slov., 2013, vol. 60, p. 159.

    Google Scholar 

  18. 18

    Mohamed, M.B., Mohamed, E.E., and Arwa, M.I., Asian J. Pharm. Anal. Med. Chem., 2014, vol. 2, p. 276.

    Google Scholar 

  19. 19

    Babu, A., Ramu, G., Venkata Rao, S., Neeharika, T., and Rambabu, C., Rasayan J. Chem., 2011, vol. 4, p. 336.

    CAS  Google Scholar 

  20. 20

    Murali, D., Venkatarao, S.V., and Rambabu, C., Am. J. Anal. Chem., 2014, vol. 5, p. 77.

    Article  CAS  Google Scholar 

  21. 21

    Ahmed, S.M. and Elshabir, A.A., J. Anal. Bioanal. Tech., 2015, vol. 2, p. 1.

    CAS  Google Scholar 

  22. 22

    Husam, S.K., Abdul Mohsin, A.A., Alaa, K.M., and Sarmad, B.D., Chem. Process Eng. Res., 2015, vol. 34, p. 1.

    Google Scholar 

  23. 23

    Swamy, N., Prashanth, K.N., and Basavaiah, K., Int. Scholarly Res. Not., 2014, 717019. doi 10.1155/2014/ 717019

  24. 24

    Roopa, K.P., Jayanna, B.K., and Nagaraja, P., Int. J. Pharm. Pharm. Sci., 2015, vol. 7, p. 151.

    Google Scholar 

  25. 25

    Basavaiah, K. and Prameela, H.C., Indian Pharm., 2002, vol. 1, p. 61.

    CAS  Google Scholar 

  26. 26

    Sadler, N.P. and Jacobs, H., Talanta, 1995, vol. 42, p. 1385.

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Prasad, A.V., Devi, P.A., Sastry, C.S., and Prasad, U.V., East Pharm., 2003, vol. 2, p. 67.

    CAS  Google Scholar 

  28. 28

    Murthy, T.K., Shankar, G.D., and Rao, Y.S., Indian. Drugs, 2002, vol. 39, p. 230.

    CAS  Google Scholar 

  29. 29

    Raghuveer, S., Avadhanulu, A.B., and Pantulu, A.R., East Pharm., 1992, vol. 35, p. 129.

    Google Scholar 

  30. 30

    Ehrlich, P. and Herter, C.A., Physiologische Chemie, Strassburg: Verlag von Karl J. Trübner, 1904, p. 329.

    Google Scholar 

  31. 31

    Roth, H.J., Eger, K., and Troschutz, R., Pharm Chemie II, Arzneistoffanalyse, Stuttgart: George Thieme, 1981, p. 279.

    Google Scholar 

  32. 32

    Folin, O. and Ciocalteu, V., J. Biochem., 1927, vol. 73, p. 627.

    CAS  Google Scholar 

  33. 33

    ICH Harmonized Tripartite Guideline, Validation of Analytical Procedures, Text and Methodology: Q2(R1), Proc. Int. Conf. on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, London: ICH Steering Committee, 1996.

  34. 34

    Sandell, E.B., Colorimetric Determination of Traces of Metals, New York: Interscience, 1965, 3rd ed.

    Google Scholar 

  35. 35

    Miller, J.N. and Miller, J.C., Statistics and Chemometrics for Analytical Chemistry, New York: Prentice Hall, 2005, 5th ed.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roopa Kothathi Papanna.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roopa Kothathi Papanna, Gowda, J.B. & Nagaraja, P. An Experimental Design Approach for Optimization of Spectrophotometric Estimation of Mirabegron in Bulk and Pharmaceutical Formulations. J Anal Chem 73, 884–893 (2018). https://doi.org/10.1134/S1061934818090095

Download citation

Keywords:

  • ninhydrin
  • sodium 1,2-napthaquinone-4-sulphonate
  • cetyltrimethyl ammonium bromide
  • Folin–Ciocalteu
  • Mirabegron
  • pharmaceuticals