Skip to main content
Log in

Kinetic Determination of Thiocyanate by the Reaction of Bromate with Crystal Violet Immobilized in a Polymethacrylate Matrix

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A procedure is proposed for the kinetic solid-phase spectrophotometric determination of thiocyanate using a polymethacrylate matrix. The procedure is based on the Landolt reaction between Crystal Violet immobilized in a polymethacrylate matrix and a bromate oxidizer, accompanied by the discoloration of the indicator in the matrix. During some induction period after the introduction of thiocyanate into the test solution, the dye in the matrix is not discolored. The duration of the induction period is proportional to the concentration of thiocyanate in the solution. The change in the color of the polymethacrylate matrix was recorded by measuring its absorbance at 600 nm. The developed procedure ensures the determination of thiocyanate in the concentration range 0.025–12 mg/L, depending on the Crystal Violet concentration in the matrix. The limit of detection calculated according to the 3s-test is 0.02 mg/L with the indicator concentration in the matrix of 0.06 mg/g. A possibility of using the proposed procedure for the determination of thiocyanate in near-wellbore water is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Rudnitskii, L.V., Zabolevaniya shchitovidnoi zhelezy. Lechenie i profilaktika (Diseases of the Thyroid Gland: Treatment and Prevention), St. Petersburg: Piter, 2009, 2nd ed.

  2. GN (Hygienic Standard) 2.2.5.1315-03: Maximum Permissible Concentration (MPC) of Chemicals in Water in Water Bodies of Domestic and Drinking Water and Cultural and Domestic Water Use, Moscow, 2003.

  3. Tabachnikov, M.M., Aktual’nye Probl. Gumanit. Estestv. Nauk, 2016, nos. 3–5, p. 95.

  4. Serres-Piole, C., Preud’homme, H., Moradi-Tehrani, N., Allanic, C., Jullia, H., and Lobinsk, R., J. Petrol. Sci. Eng., 2012, vols. 98–99, p. 22.

    Article  CAS  Google Scholar 

  5. Yang, P., Wei, W., and Tao, C., Anal. Chim. Acta, 2007, vol. 585, p. 331.

    Article  CAS  PubMed  Google Scholar 

  6. Afkhami, A., Soltani-Felehgari, F., and Madrakian, T., Sens. Actuators, B, 2014, vol. 196, p. 467.

    Article  CAS  Google Scholar 

  7. Singh, A.K., Singh, U.P., Mehtab, S., and Aggarwal, V., Sens. Actuators, B, 2007, vol. 125, no. 2, p. 453.

    Article  CAS  Google Scholar 

  8. Arvand, M., Zanjanchi, M.A., and Heydari, L., Sens. Actuators, B, 2007, vol. 125, no. 1, p. 301.

    Article  CAS  Google Scholar 

  9. Bhandari, R.K., Oda, R.P., Youso, S.L., Petriko-vics, I., Bebarta, V.S., Rockwood, G.A., and Logue, B.A., Anal. Bioanal. Chem., 2012, vol. 404, no. 8, p. 2287.

    Article  CAS  PubMed  Google Scholar 

  10. Ammazzini, S., Onor, M., and Pagliano, E., J. Chromatogr. A, 2015, vol. 1400, p. 124.

    Article  CAS  PubMed  Google Scholar 

  11. Toraño, J.S. and Van Kan, H.J.M., Analyst, 2003, vol. 128, no. 7, p. 838.

    Article  PubMed  Google Scholar 

  12. Basova, E.M., Ivanov, V.M., and Apendeeva, O.K., Moscow Univ. Chem. Bull. (Engl. Transl.), 2014, vol. 69, no. 1, p. 12.

  13. Danilina, E.I. and Abdulzalilova, R.R., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Khim., 2013, vol. 5, no. 3, p. 18.

    Google Scholar 

  14. Madrakian, T., Esmaeili, A., and Abdolmaleki, A., J. Anal. Chem., 2004, vol. 59, no. 1, p. 35.

    Google Scholar 

  15. Chamjangali, M.A., Bagherian, G., and Salek-Gilani, N., Spectrochim. Acta, Part A, 2007, vol. 67, no. 5, p. 1252.

    Article  CAS  Google Scholar 

  16. Bagherian, G., Chamjangal, M.A., and Berenji, Z., Eur. J. Anal. Chem., 2008, vol. 3, no. 3, p. 307.

    Google Scholar 

  17. Ghasemi, J., Amini, R., and Afkhami, A., Anal. Sci., 2001, vol. 17, no. 3, p. 435.

    Article  CAS  PubMed  Google Scholar 

  18. Shishehbore, M.R., Nasirizadeh, N., and Kerdegari, A.A., Anal. Sci., 2005, vol. 21, p. 1213.

    Article  CAS  PubMed  Google Scholar 

  19. Saranchina, N.V., Sukhanov, A.V., Nedosekin, D.A., Gavrilenko, N.A., and Proskurnin, M.A., J. Anal. Chem., 2011, vol. 66, no. 6, p. 623.

    Article  CAS  Google Scholar 

  20. Gavrilenko, N.A., Saranchina, N.V., and Gavrilenko, M.A., J. Anal. Chem., 2015, vol. 70, no. 12, p. 1475.

    Article  CAS  Google Scholar 

  21. GOST (State Standard) 4212-76: Reagents. Methods for Preparation of Solutions for Colorimetric and Nephelometric Analysis, Moscow: Standartinform, 2008.

  22. Gavrilenko, N.A. and Mokrousov, G.M., RF Panent 2272284, Byull. Izobret., 2006, no. 8.

  23. Dedkova, L.A., Byull. Vostochno-Sib. Nauchn. Centra Sib. Otd. Ross. Akad. Med. Nauk, Ser.: Khim., 2007, no. 1, p. 91.

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research, project no. 16-43-700353 r_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Gavrilenko.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilenko, N.A., Saranchina, N.V., Sukhanov, A.V. et al. Kinetic Determination of Thiocyanate by the Reaction of Bromate with Crystal Violet Immobilized in a Polymethacrylate Matrix. J Anal Chem 73, 894–899 (2018). https://doi.org/10.1134/S1061934818090034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934818090034

Keywords:

Navigation