Journal of Analytical Chemistry

, Volume 73, Issue 7, pp 641–649 | Cite as

Determination of Adsorbates on the Surface of Polymer with Low Absorption Capacity by Thermal Lens Spectrometry

  • D. A. Nedosekin
  • I. V. Mikheev
  • D. S. Volkov
  • M. A. ProskurninEmail author


Thermal lens spectrometry in a coaxial configuration is used for the direct determination of adsorbates on a planar surface of polyethylene terephthalate (PET). A possibility of the direct measurement of the rate of adsorption from solutions and the determination of the parameters of the adsorbed layer is demonstrated by the example of an investigation of the adsorption of iron(II) tris(1,10-phenantrolinate) on a PET surface. The adsorption isotherm of iron(II) tris(1,10-phenantrolinate) on the PET surface is described by the Langmuir equation and is linear in the concentration range in solution from 0.02 to 0.7 mM. The method for calculating the thermal perturbation in surface-absorbing solids was used to interpret the results of the adsorption study, and a possibility of determining iron(II) tris(1,10-phenantrolinate) on the surface at a level smaller than a monolayer was shown. Thermal lens spectrometry enables the determination of the absorption of the surface layer at a level up to 5 × 10–5 absorbance units, which corresponds to the surface concentration of iron(II) tris(1,10-phenanthrolinate) 2 × 10–13 mol/cm2. Using the example of the adsorption of 4-(2-pyridylazo) resorcinol on the PET surface, it is demonstrated that, in the case of strong absorption of the surface layer, the thermal destruction of substance and the deformation of the substrate may occur. A local increase in temperature in the layer is also confirmed by theoretical calculations.


thermal lens spectrometry spectrophotometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, M. and Franko, M., Crit. Rev. Anal. Chem., 2014, vol. 44, no. 4, p.328.CrossRefPubMedGoogle Scholar
  2. 2.
    Bialkowski, S.E., Photothermal Spectroscopy Methods for Chemical Analysis, New York: Wiley, 1996.Google Scholar
  3. 3.
    Nedosekin, D.A., Saranchina, N.V., Sukhanov, A.V., Gavrilenko, N.A., Mikheev, I.V., and Proskurnin, M.A., Appl. Spectrosc., 2013, vol. 67, no. 7, p.709.CrossRefPubMedGoogle Scholar
  4. 4.
    Korte, D. and Franko, M., Int. J. Thermophys., 2014, vol. 35, no. 12, p. 2352.CrossRefGoogle Scholar
  5. 5.
    Malacarne, L.C., Astrath, N.G.C., Lukasievicz, G.V.B., Lenzi, E.K., Baesso, M.L., and Bialkowski, S.E., Appl. Spectrosc., 2011, vol. 65, no. 1, p.99.CrossRefPubMedGoogle Scholar
  6. 6.
    Kononets, M.Yu, Cand. Sci. (Chem.) Dissertation, Moscow: Moscow State Univ., 2005.Google Scholar
  7. 7.
    Najmoddin, N. and Khosroshahi, M.E., Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 774, p.1.CrossRefGoogle Scholar
  8. 8.
    Capeloto, O.A., Lukasievicz, G.V.B., Zanuto, V.S., Herculano, L.S., Souza Filho, N.E., Novatski, A., Malacarne, L.C., Bialkowski, S.E., Baesso, M.L., and Astrath, N.G.C., Appl. Opt., 2014, vol. 53, no. 33, p. 7985.CrossRefPubMedGoogle Scholar
  9. 9.
    Saranchina, N.V., Sukhanov, A.V., Nedosekin, D.A., Gavrilenko, N.A., and Proskurnin, M.A., J. Anal. Chem., 2011, vol. 66, no. 6, p.623.CrossRefGoogle Scholar
  10. 10.
    Proskurnin, M.A. and Kononets, M.Yu., Russ. Chem. Rev., 2004, vol. 73, no. 12, p. 1143.CrossRefGoogle Scholar
  11. 11.
    Wang, Z.-G., Wan, L.-S., and Xu, Z.-K., J. Membr. Sci., 2007, vol. 304, nos. 1–2, p.8.CrossRefGoogle Scholar
  12. 12.
    Gavrilenko, N.A. and Saranchina, N.V., J. Anal. Chem., 2010, vol. 65, no. 2, p.148.CrossRefGoogle Scholar
  13. 13.
    Gavrilenko, N.A. and Saranchina, N.V., J. Anal. Chem., 2009, vol. 64, no. 3, p.226.CrossRefGoogle Scholar
  14. 14.
    Nedosekin, D.A., Proskurnin, M.A., and Kononets, M.Y., Appl. Opt., 2005, vol. 44, no. 29, p. 6296.CrossRefPubMedGoogle Scholar
  15. 15.
    Schweitzer, M.A. and Power, J.F., Appl. Spectrosc., 1994, vol. 48, p. 1054.CrossRefGoogle Scholar
  16. 16.
    Shen, J. and Snook, R.D., J. Appl. Phys., 1993, vol. 73, no. 10, p. 5286.CrossRefGoogle Scholar
  17. 17.
    Proskurnin, M.A., Volkov, D.S., Gor’kova, T.A., Bendrysheva, S.N., Smirnova, A.P., and Nedosekin, D.A., J. Anal. Chem., 2015, vol. 70, no. 3, p.249.CrossRefGoogle Scholar
  18. 18.
    Proskurnin, M.A., Photothermal spectroscopy, in Laser Spectroscopy for Sensing, Baudelet, M., Ed., Cambridge: Woodhead, 2014, p.313.CrossRefGoogle Scholar
  19. 19.
    Proskurnin, M.A., Nedosekin, D.A., Volkov, D.S., Mikheev, I.V., and Filichkina, V.A., RF Patent 2615912, Byull. Izobret., 2017, no.11.Google Scholar
  20. 20.
    Kononets, M.Y., Proskurnin, M.A., Bendrysheva, S.N., and Chernysh, V.V., Talanta, 2001, vol. 53, no. 6, p. 1221.CrossRefPubMedGoogle Scholar
  21. 21.
    Gladyshev, V.P., Levitskaya, S.A., and Fillipova, L.M., Analiticheskaya khimiya rtuti (Analytical Chemistry of Mercury), Moscow: Nauka, 1974.Google Scholar
  22. 22.
    Pons, M., Nonell, S., García-Moreno, I., Costela, Á., and Sastre, R., Appl. Phys. B: Lasers Opt., 2002, vol. 75, nos. 6–7, p.687.CrossRefGoogle Scholar
  23. 23.
    Elperin, T. and Rudin, G., Heat Mass Transfer, 2010, vol. 46, no. 7, p. 717.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. A. Nedosekin
    • 1
  • I. V. Mikheev
    • 2
  • D. S. Volkov
    • 2
  • M. A. Proskurnin
    • 2
    Email author
  1. 1.Arkansas Nanomedicine CenterUniversity of Arkansas for Medical SciencesLittle RockUnited States
  2. 2.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations