Journal of Analytical Chemistry

, Volume 73, Issue 7, pp 695–704 | Cite as

Square Wave Adsorptive Stripping Voltammetry Determination of Chlorpyriphos in Irrigation Agricultural Water

  • Luisa C. Melo
  • Murilo S. S. Julião
  • Maria A. L. Milhome
  • Ronaldo F. do Nascimento
  • Djenaine De SouzaEmail author
  • Pedro de Lima-Neto
  • Adriana N. Correia


This work describes the electroanalytical determination of Chlorpyriphos pesticide in natural waters using hanging mercury drop electrode allied to square wave adsorptive cathodic stripping voltammetry. The best responses were obtained in Britton‒Robinson buffer solutions at pH 2.0, using a frequency of 100 s–1, a scan increment of 5 mV, a square wave amplitude of 25 mV and an accumulation potential of–0.4 V during 60 s. Therefore, voltammetric responses showed the presence of one well-defined and irreversible reduction peak, at–1.08 V vs. Ag/AgCl/KCl 1.0 M, which involves two electrons in the reduction of carbon‒nitrogen bond in the N-heterocyclic system with the participation of protonation equilibrium preceding the electron transfer reaction. Analytical curves were constructed and compared to similar curves performed by gas chromatograph coupled to a selective nitrogen‒phosphorus detector, which demonstrates that the proposed methodology is suitable for determining contamination by Chlorpyriphos in complex samples.


Chlorpyriphos organophosphorous pesticide natural water adsorptive square wave voltammetry hanging mercury drop electrode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Instituto de Pesquisa e Estratégia Econômica do Ceará. Accessed April, 2016.
  2. 2.
    Milhome, M.A.L., Sousa, D.O.B., Lima, F.A.F., and Nascimento, R.F., Eng. Sanit. Ambiental, 2009, vol. 14, p.363.CrossRefGoogle Scholar
  3. 3.
    Timchalk, C., Campbell, J.A., Liu, G., Lin, Y., and Kousba, A.A., Toxicol. Appl. Pharmacol., 2007, vol. 219, p.217.CrossRefPubMedGoogle Scholar
  4. 4.
    Agência de Vigilância Sanitária (ANVISA). Accessed April, 2016.
  5. 5.
    Sánchez-Brunete, C., Martínez, L., and Tadeo, J.L., J. Agric. Food Chem., 1994, vol. 42, p. 2210.CrossRefGoogle Scholar
  6. 6.
    Guardino, X., Obilis, J., Rosell, M.G., Farran, A., and Serra, C., J. Chromatogr. A, 1998, vol. 823, p.91.CrossRefPubMedGoogle Scholar
  7. 7.
    Mirceski, V., Komorsky-Lovric, Š., and Lovric, M., Square Wave Voltammetry: Theory and Applications, Berlin: Springer, 2007.Google Scholar
  8. 8.
    De Souza, D., Codognoto, L., Toledo, R.A., Pedrosa, V.A., Oliveira, R.T.S., Mazo, L.H., Avaca, L.A., and Machado, S.A.S., Quim. Nova, 2004, vol. 27, no. 5, p.790.CrossRefGoogle Scholar
  9. 9.
    Wang, J., Stripping Analysis: Principles, Instrumentation and Applications, Deerfield Beach: VCH, 1985.Google Scholar
  10. 10.
    Comninelles, C. and Chen, G., Electrochemistry for the Environment, New York: Springer, 2010.CrossRefGoogle Scholar
  11. 11.
    Yan, F., He, Y., Ding, L., and Su, B., Anal. Chem., 2015, vol. 87, p. 4436.CrossRefPubMedGoogle Scholar
  12. 12.
    Hildebrandt, A., Bragós, R., Lacorte, S., and Marty, J.L., Sens. Actuators, B, 2008, vol. 133, p.195.CrossRefGoogle Scholar
  13. 13.
    Viswanathan, S., Radecka, H., and Radecki, J., Biosens. Bioelectron., 2009, vol. 24, p. 2772.CrossRefPubMedGoogle Scholar
  14. 14.
    Prabhakar, N., Sumana, G., Arora, K., Singh, H., and Malhotra, B.D., Electrochim. Acta, 2008, vol. 53, p. 4344.CrossRefGoogle Scholar
  15. 15.
    Munch, J.W., Method 507: Determination of Nitrogenand Phosphorus-Containing Pesticides in Water by Gas Chromatography with a Nitrogen–Phosphorus Detector, Revision 2.1, 1995, 01–31. Accessed April, 2016.Google Scholar
  16. 16.
    Mocak, J., Bond, A.M., Mitchel, S., and Scollary, G., Pure Appl. Chem., 1997, vol. 69, p.297.CrossRefGoogle Scholar
  17. 17.
    Analytical Methods Committee, Analyst, 1987, vol. 112, p.199.Google Scholar
  18. 18.
    Skoog, D.A., West, D.M., and Holler, F.J., Fundamentals of Analytical Chemistry, Philadelphia: Saunders College, 1996.Google Scholar
  19. 19.
    Al-Meqbali, A.S.R., El-Shawi, M.S., and Kamal, M.M., Electroanalysis, 1998, vol. 10, p.784.CrossRefGoogle Scholar
  20. 20.
    Compton, R.G. and Banks, C.E., Understanding Voltammetry, London: World Sci., 2007.CrossRefGoogle Scholar
  21. 21.
    Fry, A.J., Synthetic Organic Electrochemistry, New York: Wiley, 1989, 2nd ed.Google Scholar
  22. 22.
    O’dea, J.J., Ribes, A., and Osteryoung, J.G., J. Electroanal. Chem., 1993, vol. 345, p.287.CrossRefGoogle Scholar
  23. 23.
    Christian, G.D., Analytical Chemistry, New York: Wiley, 2004, 6th edGoogle Scholar
  24. 24.
    Conselho Nacional do Meio Ambiente (CONAMA, Environmental National Council in Brazil). Accessed April, 2016.
  25. 25.
    Ministério da Saúde, Portaria no. 2.914, December 12, 2011.Google Scholar
  26. 26.
    Agência Nacional de Vigilância Sanitária (ANVISA). Accessed April, 2016.
  27. 27.
    ICH-Q2Bn. Validations of Analytical Procedures: Methodology, International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, November 1996.Google Scholar
  28. 28.
    Other Clean Water Act Test Methods: Microbiological, Environmental Protection Agency (EPA). Accessed April, 2016.

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Luisa C. Melo
    • 1
  • Murilo S. S. Julião
    • 1
  • Maria A. L. Milhome
    • 2
  • Ronaldo F. do Nascimento
    • 2
  • Djenaine De Souza
    • 3
    Email author
  • Pedro de Lima-Neto
    • 2
  • Adriana N. Correia
    • 2
  1. 1.Curso de QuímicaUniversidade Estadual Vale do Acaraú, Campus BetâniaSobral-CEBrazil
  2. 2.Departamento de Química Analítica e Físico-Química, Centro de CiênciasUniversidade Federal do CearáFortaleza-CEBrazil
  3. 3.Campus de Patos de Minas, Instituto de QuímicaUniversidade Federal de UberlândiaPatos de Minas-MGBrazil

Personalised recommendations