Advertisement

Journal of Analytical Chemistry

, Volume 73, Issue 7, pp 650–660 | Cite as

Simultaneous Determination of 11 Elements in Fly Ash by Inductively Coupled Plasma Orthogonal Acceleration Time-of-Flight Mass Spectrometry After Closed-Vessel Microwave-Assisted Extraction with Ammonium Fluoride

  • Lenka HusákováEmail author
  • Iva Urbanová
  • Tereza Šídová
  • Michaela Šafránková
Articles
  • 57 Downloads

Abstract

A method for simultaneous multi-element analysis of fly ash samples by inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (oaTOF-ICP-MS) after closed-vessel microwave extraction with ammonium fluoride was introduced here. Corrosive and/or toxic acids like HF, HCl or HClO4, as well as HNO3, which are commonly used during sample preparation of the fly ash samples, are avoided in this method. The spectral effects due to the formation of different Cl, Na, K, Ca, Mg-containing polyatomic species interfering with the determination of a number of elements like As, Se or Ni during the oaTOF-ICP-MS analysis are negligible. Under the optimum experimental extraction conditions evaluated using a fractional factorial design (10 mg of the sample extracted with 5 mL of 140 g/L NH4F for 10 min at 200°C), analysis of the resulting supernatant with Rh as an internal standard enabled precise and accurate simultaneous determination of 11 elements (Li, Be, Ni, As, Se, Rb, Sb, Cs, W, Tl and U) at trace and ultratrace levels. The accuracy was assessed by analysing two certified reference materials, namely Fine Fly Ash CTA-FFA-1 and Constituent Elements in Coal Fly Ash Standard Reference Material® 1633b. The precision of the reported method was better than 10%.

Keywords

oaTOF-ICP-MS trace elements fly ash microwave-assisted extraction fractional factorial design ammonium fluoride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmaruzzaman, M., Prog. Energ. Combust., 2010, vol. 36, no. 3, p.327.CrossRefGoogle Scholar
  2. 2.
    Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., and Xi, Y.Q., Earth-Sci. Rev., 2015, vol. 141, no. 1, p.105.CrossRefGoogle Scholar
  3. 3.
    Lachas, H., Richaud, R., Jarvis, K.E., Herod, A.A., Dugwell, D.R., and Kandiyoti, R., Analyst, 1999, vol. 124, no. 2, p.177.CrossRefGoogle Scholar
  4. 4.
    Wang, J., Nakazato, T., Sakanishi, K., Yamada, O., Tao, H., and Saito, I., Talanta, 2006, vol. 68, no. 5, p. 1584.CrossRefPubMedGoogle Scholar
  5. 5.
    Depoi, F.S., Pozebon, D., and Kalkreuth, W.D., Int. J. Coal Geol., 2008, vol. 76, no. 3, p.227.CrossRefGoogle Scholar
  6. 6.
    Marrero, J., Polla, G., Rebagliati, R.J., Pla, R., Gomez, D., and Smichowski, P., Spectrochim. Acta, Part B, 2007, vol. 62, no. 2, p.101.CrossRefGoogle Scholar
  7. 7.
    Smichowski, P., Polla, G., Gomez, D., Espinosa, A.J.F., and Lopez, A.C., Fuel, 2008, vol. 87, no. 7, p. 1249.CrossRefGoogle Scholar
  8. 8.
    Chang, C.Y., Wang, C.F., Mui, D.T., and Chiang, H.L., J. Hazard. Mater., 2009, vol. 163, nos. 2–3, p.578.CrossRefPubMedGoogle Scholar
  9. 9.
    Pontes, F.V.M., Mendes, B.A.D., de Souza, E.M.F., Ferreira, F.N., da Silva, L.I.D., Carneiro, M.C., Monteiro, M.I.C., de Almeida, M.D., Neto, A.A., and Vaitsman, D.S., Anal. Chim. Acta, 2010, vol. 659, nos. 1–2, p.55.CrossRefPubMedGoogle Scholar
  10. 10.
    Ilander, A. and Vaisanen, A., Ultrason. Sonochem., 2009, vol. 16, no. 6, p.763.CrossRefPubMedGoogle Scholar
  11. 11.
    Ilander, A. and Vaisanen, A., Anal. Chim. Acta, 2007, vol. 602, no. 2, p.195.CrossRefPubMedGoogle Scholar
  12. 12.
    Huang, S.J., Chang, C.Y., Mui, D.T., Chang, F.C., Lee, M.Y., and Wang, C.F., J. Hazard. Mater., 2007, vol. 149, no. 1, p.180.CrossRefPubMedGoogle Scholar
  13. 13.
    Low, F. and Zhang, L., Talanta, 2012, vol. 101, no. 1, p.346.CrossRefPubMedGoogle Scholar
  14. 14.
    Iwashita, A., Nakajima, T., Takanashi, H., Ohki, A., Fujita, Y., and Yarnashita, T., Talanta, 2007, vol. 71, no. 1, p.251.CrossRefPubMedGoogle Scholar
  15. 15.
    Rodushkin, I., Axelsson, M.D., and Burman, E., Talanta, 2000, vol. 51, no. 4, p.743.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang, H., Nakazato, T., Sakanishi, K., Yamada, O., Tao, H., and Saito, I., Anal. Chim. Acta, 2004, vol. 514, no. 1, p.115.CrossRefGoogle Scholar
  17. 17.
    Xu, Y.H., Iwashita, A., Nakajima, T., Yamashita, H., Takanashi, H., and Ohki, A., Talanta, 2005, vol. 66, no. 1, p.58.CrossRefPubMedGoogle Scholar
  18. 18.
    Laitinen, T., Revitzer, H., and Tolvanen, M., Fresenius’ J. Anal. Chem., 1996, vol. 354, no. 4, p.436.Google Scholar
  19. 19.
    Bettinelli, M., Spezia, S., Baroni, U., and Bizzarri, G., Microchem. J., 1998, vol. 59, no. 2, p.203.CrossRefGoogle Scholar
  20. 20.
    Fernandez-Perez, V., Garcia-Ayuso, L.E., and de Castro, M.D.L., Analyst, 2000, vol. 125, no. 2, p.317.CrossRefGoogle Scholar
  21. 21.
    Mketo, N., Nomngongo, P.N., and Ngila, J.C., Int. J. Environ. Anal. Chem., 2015, vol. 95, no. 5, p.453.CrossRefGoogle Scholar
  22. 22.
    Smolka-Danielowska, D., Pol. J. Environ. Stud., 2006, vol. 15, no. 6, p.943.Google Scholar
  23. 23.
    Xie, H.L., Tang, Y.G., Li, Y.J., and Li, L.B., J. Cent. South Univ. Technol. (Engl. Ed.), 2007, vol. 14, no. 1, p.68.CrossRefGoogle Scholar
  24. 24.
    Swami, K., Judd, C.D., Orsini, J., Yang, K.X., and Husain, L., Fresenius’ J. Anal. Chem., 2001, vol. 369, no. 1, p.63.CrossRefGoogle Scholar
  25. 25.
    Das, A.K. and Chakraborty, R., Guardia Mde, L., Cervera, M.L., and Goswami, D., Talanta, 2001, vol. 54, no. 5, p.975.CrossRefPubMedGoogle Scholar
  26. 26.
    Li, X., Dai, S.F., Zhang, W.G., Li, T., Zheng, X., and Chen, W.M., Int. J. Coal Geol., 2014, vol. 124, no. 1, p.1.CrossRefGoogle Scholar
  27. 27.
    Antes, F.G., Duarte, F.A., Mesko, M.F., Nunes, M.A.G., Pereira, V.A., Mueller, E.I., Dressler, V.L., and Flores, E.M.M., Talanta, 2010, vol. 83, no. 2, p.364.CrossRefPubMedGoogle Scholar
  28. 28.
    Bettinelli, M., Spezia, S., Baroni, U., and Bizzarri, G., At. Spectrosc., 1998, vol. 19, no. 3, p.73.Google Scholar
  29. 29.
    Stankova, A., Gilon, N., Dutruch, L., and Kanicky, V., J. Anal. At. Spectrom., 2011, vol. 26, no. 2, p.443.CrossRefGoogle Scholar
  30. 30.
    Zhang, Y.F., Jiang, Z.C., He, M., and Hu, B., Environ. Pollut., 2007, vol. 148, no. 2, p.459.CrossRefPubMedGoogle Scholar
  31. 31.
    Vieira, M.A., Ribeiro, A.S., and Curtius, A.J., Microchem. J., 2006, vol. 82, no. 2, p.127.CrossRefGoogle Scholar
  32. 32.
    Ni, J.L., Liu, C.C., and Jiang, S.J., Anal. Chim. Acta, 2005, vol. 550, nos. 1–2, p.144.CrossRefGoogle Scholar
  33. 33.
    Chen, C.C., Jiang, S.J., and Sahayam, A.C., Talanta, 2015, vol. 131, no. 1, p.585.CrossRefPubMedGoogle Scholar
  34. 34.
    Maia, S.M., Pozebon, D., and Curtius, A.J., J. Anal. At. Spectrom., 2003, vol. 18, no. 4, p.330.CrossRefGoogle Scholar
  35. 35.
    Hu, Z.C., Gao, S., Liu, Y.S., Hu, S.H., Zhao, L.S., Li, Y.X., and Wang, Q., J. Anal. At. Spectrom., 2010, vol. 25, no. 3, p.408.CrossRefGoogle Scholar
  36. 36.
    Srogi, K., Anal. Lett., 2007, vol. 40, no. 2, p.199.CrossRefGoogle Scholar
  37. 37.
    Aldabe, J., Santamaria, C., Elustondo, D., Lasheras, E., and Santamaria, J.M., Anal. Methods, 2013, vol. 5, no. 2, p.554.CrossRefGoogle Scholar
  38. 38.
    Stankova, A., Gilon, N., Dutruch, L., and Kanicky, V., Fuel, 2010, vol. 89, no. 11, p. 3468.CrossRefGoogle Scholar
  39. 39.
    Brenner, I.B. and Zander, A., Fresenius’ J. Anal. Chem., 1996, vol. 355, nos. 5–6, p.559.Google Scholar
  40. 40.
    Yu, Z.S., Robinson, P., and McGoldrick, P., Geostand. Newslett., 2001, vol. 25, nos. 2–3, p.199.CrossRefGoogle Scholar
  41. 41.
    Bacon, J.R. and Davidson, C.M., Analyst, 2008, vol. 133, no. 1, p.25.CrossRefPubMedGoogle Scholar
  42. 42.
    Nobrega, J.A., Trevizan, L.C., Araujo, G.C.L., and Nogueira, A.R.A., Spectrochim. Acta, Part B, 2002, vol. 57, no. 12, p. 1855.CrossRefGoogle Scholar
  43. 43.
    Al-Harahsheh, M. and Kingman, S.W., Hydrometallurgy, 2004, vol. 73, nos. 3–4, p.189.CrossRefGoogle Scholar
  44. 44.
    Armenta, S., Garrigues, S., and de la Guardia, M., TrAC, Trends Anal. Chem., 2008, vol. 27, no. 6, p.497.CrossRefGoogle Scholar
  45. 45.
    Sah, R.N. and Brown, P.H., Microchem. J., 1997, vol. 56, no. 3, p.285.CrossRefGoogle Scholar
  46. 46.
    Mann, S., Geilenberg, D., Broekaert, J.A.C., and Jansen, M., J. Anal. At. Spectrom., 1997, vol. 12, no. 9, p.975.CrossRefGoogle Scholar
  47. 47.
    Hu, Z. and Gao, S., Chem. Geol., 2008, vol. 253, nos. 3–4, p.205.CrossRefGoogle Scholar
  48. 48.
    Kozono, S., Yagi, M., and Takashi, R., Anal. Chim. Acta, 1998, vol. 368, no. 3, p.275.CrossRefGoogle Scholar
  49. 49.
    Husakova, L., Urbanova, I., Sidova, T., Cahova, T., Faltys, T., and Sramkova, J., Int. J. Environ. Anal. Chem., 2015, vol. 95, no. 10, p.922.CrossRefGoogle Scholar
  50. 50.
    Hoenig, M., Talanta, 2001, vol. 54, no. 6, p. 1021.CrossRefPubMedGoogle Scholar
  51. 51.
    Sturgeon, R.E., Lam, J.W.H., and Saint, A., J. Anal. At. Spectrom., 2000, vol. 15, no. 6, p.607.CrossRefGoogle Scholar
  52. 52.
    Reed, N.M., Cairns, R.O., Hutton, R.C., and Takaku, Y., J. Anal. At. Spectrom., 1994, vol. 9, no. 8, p.881.CrossRefGoogle Scholar
  53. 53.
    Husakova, L., Urbanova, I., Audrlicka-Vavrusova, L., Sramkova, J., Cernohorsky, T., Bednarikova, M., and Pilarova, L., Microchim. Acta, 2011, vol. 173, nos. 1–2, p.173.CrossRefGoogle Scholar
  54. 54.
    Husakova, L., Urbanova, I., Sidova, T., and Mikysek, T., Anal. Methods, 2015, vol. 7, no. 12, p. 5019.CrossRefGoogle Scholar
  55. 55.
    Husakova, L., Urbanova, I., Sramkova, J., Cernohorsky, T., Krejcova, A., Bednarikova, M., Frydova, E., Nedelkova, I., and Pilarova, L., Food Chem., 2011, vol. 129, no. 3, p. 1287.CrossRefPubMedGoogle Scholar
  56. 56.
    Husakova, L., Urbanova, I., Sramkova, J., Konecna, M., and Bohuslavova, J., Talanta, 2013, vol. 106, p.66.CrossRefPubMedGoogle Scholar
  57. 57.
    Krishna, M.V.B., Chandrasekaran, K., and Karunasagar, D., Anal. Methods, 2012, vol. 4, no. 5, p. 1401.CrossRefGoogle Scholar
  58. 58.
    Anastas, P.T. and Kirchhoff, M.M., Acc. Chem. Res., 2002, vol. 35, no. 9, p.686.CrossRefPubMedGoogle Scholar
  59. 59.
    Box, G.E.P., Hunter, W.G., and Hunter, J.S., Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, New York: Wiley, 1978.Google Scholar
  60. 60.
    Montgomery, D.C., Design and Analysis of Experiments, New York: Wiley, 1991.Google Scholar
  61. 61.
    Husakova, L., Cernohorsky, T., Sramkova, J., and Urbanova-Dolezalova, I., Anal. Chim. Acta, 2009, vol. 634, no. 1, p.22.CrossRefPubMedGoogle Scholar
  62. 62.
    Rakov, E.G. and Mel’nichenko, E.I., Russ. Chem. Rev., 1984, vol. 53, no. 9, p.851.CrossRefGoogle Scholar
  63. 63.
    Walker, T.R., Young, S.D., Crittenden, P.D., and Zhang, H., Environ. Pollut., 2003, vol. 121, no. 1, p. 11.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Lenka Husáková
    • 1
    Email author
  • Iva Urbanová
    • 1
  • Tereza Šídová
    • 1
  • Michaela Šafránková
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations