Advertisement

Journal of Analytical Chemistry

, Volume 73, Issue 4, pp 390–398 | Cite as

Selective Voltammetric and Flow-Injection Determination of Guanosine and Adenosine at a Glassy Carbon Electrode Modified with a Ruthenium Hexachlororuthenate Film

  • L. G. ShaidarovaEmail author
  • A. V. Gedmina
  • V. D. Demina
  • I. A. Chelnokova
  • H. C. Budnikov
Articles
  • 44 Downloads

Abstract

An inorganic film of ruthenium hexachlororuthenate (RuRuCl6), deposited on the surface of a glassy carbon electrode, exhibits electrocatalytic activity in the oxidation of purine nucleosides, such as guanosine and adenosine. Appropriate operating conditions are found for fabricating a polymer film on the surface of glassy carbon and for recording the maximum electrocatalytic current for the modified electrode. A method for the selective voltammetric determination of guanosine and adenosine in their simultaneous presence at an electrode modified by a RuRuCl6 film is developed. A procedure is proposed for the amperometric detection of purine nucleosides with this modified electrode under the conditions of flow-injection analysis. The linear dependence of the analytical signal on the concentration of guanosine and adenosine is observed up to 5 × 10–6 M in the stationary mode and up to 5 × 10–7 M in the flow system. The proposed method for the selective determination of guanosine and adenosine was tested in the analysis of human urine.

Keywords

chemically modified electrodes inorganic polymer films ruthenium hexachlororuthenate guanosine adenosine electrocatalysis electroanalysis flow-injection analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, J., Belardinelli, L., Jacobson, K.A., Otero, D.H., and Baker, S.P., Mol. Pharm., 1997, vol. 52, no. 3, p.491.CrossRefGoogle Scholar
  2. 2.
    Kloor, D., Yao, K., Delabar, U., and Osswald, H., Clin. Chem., 2000, vol. 46, no. 4, p.537.Google Scholar
  3. 3.
    Frizzo, M.E.D.S., Lara, D.R., Prokopiuk, A.D.S., Vargas, C.R., Salbego, C.Z., Wajner, M., and Souza, D.O., Cell. Mol. Neurobiol., 2002, vol. 22, no. 3, p.353.CrossRefGoogle Scholar
  4. 4.
    Malathi, R. and Johnson, I.M., J. Biomol. Struct. Dyn., 2001, vol. 18, p.709.CrossRefGoogle Scholar
  5. 5.
    Hartwick, R.A. and Brown, P.R., J. Chromatogr., 1977, vol. 143, no. 4, p.383.CrossRefGoogle Scholar
  6. 6.
    Sheng, R. and Ni, F., Anal. Chem., 1991, vol. 63, no. 5, p.437.CrossRefGoogle Scholar
  7. 7.
    Lin, H., Xu, D.K., and Chen, H.Y., J. Chromatogr. A, 1997, vol. 760, no. 2, p.227.CrossRefGoogle Scholar
  8. 8.
    Yang, J., Xu, G., Kong, H., Zheng, Y., Pang, T., and Yang, Q., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2002, vol. 780, no. 1, p.27.CrossRefGoogle Scholar
  9. 9.
    Yashin, A., Analitika, 2011, vol. 1, no. 1, p.34.Google Scholar
  10. 10.
    Giannattasio, S., Gagliadi, S., Samaja, M., and Marra, E., Brain Res. Protoc., 2003, vol. 10, no. 3, p.168.CrossRefGoogle Scholar
  11. 11.
    Feng, J.D.Z. and Yeung, P.K.F., Ther. Drug Monit., 2000, vol. 22, no. 2, p.177.CrossRefGoogle Scholar
  12. 12.
    Nakano, K., Yasaka, T., Schram, K.H., Reimer,M.L.J., Mc Clure, T.D., Nakao, T., and Yamanoto, H., J. Chromatogr. A, 1990, vol. 515, p.537.CrossRefGoogle Scholar
  13. 13.
    Tang, C., Yogeswaran, U., and Chen, S.M., Anal. Chim. Acta, 2009, vol. 636, no. 1, p.19.CrossRefGoogle Scholar
  14. 14.
    Shen, Q. and Wang, X., J. Electroanal. Chem., 2009, vol. 632, nos. 1–2, p.149.CrossRefGoogle Scholar
  15. 15.
    Xiao, F., Zhao, F., Li, J., Liu, L., and Zeng, B., Electrochim. Acta, 2008, vol. 53, no. 26, p. 7781.CrossRefGoogle Scholar
  16. 16.
    Wang, Z., Xiao, S., and Chen, Y., J. Electroanal. Chem., 2006, vol. 589, no. 2, p.237.CrossRefGoogle Scholar
  17. 17.
    Liu, H., Wang, G., Chen, D., Zhang, W., Li, C., and Fang, B., Sens. Actuators, B, 2008, vol. 128, no. 2, p.414.CrossRefGoogle Scholar
  18. 18.
    Shaidarova, L.G. and Budnikov, G.K., J. Anal. Chem., 2008, vol. 63, no. 10, p.922.CrossRefGoogle Scholar
  19. 19.
    Shaidarova, L.G. and Budnikov, G.K., Amperometric sensors with catalytic properties in organic voltammetry, in Problemy analiticheskoi khimii (Problems of Analytical Chemistry), vol. 14: Khimicheskie sensory (Chemical Sensors), Moscow: Nauka, 2011, p.203.Google Scholar
  20. 20.
    Gao, H., Duan, Y., Xi, M., and Sun, W., Microchim. Acta, 2011, vol. 172, nos. 1–2, p.57.CrossRefGoogle Scholar
  21. 21.
    Wei, S., Yuanyuan, D., Yinzhuo, L., Hongwei, G., and Kui, J., Talanta, 2009, vol. 78, no. 3, p.695.CrossRefGoogle Scholar
  22. 22.
    Goyal, R.N. and Singh, S.P., Carbon, 2008, vol. 46, no. 12, p. 1556.CrossRefGoogle Scholar
  23. 23.
    Sun, W., Li, Y., Duan, Y., and Jiao, K., Electrochim. Acta, 2009, vol. 54, no. 16, p. 4105.CrossRefGoogle Scholar
  24. 24.
    Huanshun, Y., Yunlei, Z., Qiang, M., Shiyun, A., Quanpeng, C., and Lusheng, Z., Talanta, 2010, vol. 82, p. 1193.CrossRefGoogle Scholar
  25. 25.
    Goyala, R.N., Guptaa, V.K., Oyamab, M., and Bachheti, N., Talanta, 2007, vol. 71, no. 3, p. 1110.CrossRefGoogle Scholar
  26. 26.
    Fortin, E., Tune, J.C., Mailley, P., Szunerits, S., Marcus, B., Petit, J.P., Mermoux, M., and Vieil, E., Bioelectrochemistry, 2004, vol. 63, p.303.CrossRefGoogle Scholar
  27. 27.
    Pei, J., Li, X.-Y., and Buffle, J., Talanta, 2000, vol. 45, no. 10, p. 1581.Google Scholar
  28. 28.
    Chen, S.M. and Lin, K.H., J. Electroanal. Chem., 2005, vol. 583, no. 2, p.248.CrossRefGoogle Scholar
  29. 29.
    Chen, S.M., Li, S.H., and Thangamuthu, R., Electroanalysis, 2009, vol. 21, no. 13, p. 1505.CrossRefGoogle Scholar
  30. 30.
    Chen, S.M. and Lin, K.H., J. Electroanal. Chem., 2006, vol. 586, no. 2, p.145.CrossRefGoogle Scholar
  31. 31.
    Thiagarajan, S., Chen, S.M., and Lin, K.H., J. Electrochem. Soc., 2008, vol. 155, no. 3, p.33.CrossRefGoogle Scholar
  32. 32.
    Kuhnhardt, C., J. Electroanal. Chem., 1994, vol. 369, nos. 1–2, p.71.CrossRefGoogle Scholar
  33. 33.
    Kaplun, M.M., Smirnov, Yu.E., Mikli, V., and Maleev, V.V., Russ. J. Electrochem., 2001, vol. 37, no. 9, p.914.CrossRefGoogle Scholar
  34. 34.
    Shaidarova, L.G., Zaripova, S.A., Tikhonova, L.N., Budnikov, G.K. and Fitsev, I.M., Russ. J. Appl. Chem., 2001, vol. 74, no. 5, p.750.CrossRefGoogle Scholar
  35. 35.
    Kumar, A.S. and Zen, J.-M., Electroanalysis, 2004, vol. 16, no. 15, p. 1211.CrossRefGoogle Scholar
  36. 36.
    Damaskin, B.B., Petrii, O.A., and Podlovchenko, B.I., Praktikum po elektrokhimii (Practical Works on Electrohemistry), Moscow: Vysshaya Shkola, 1991.Google Scholar
  37. 37.
    Budnikov, G.K., Maistrenko, V.N., and Vyaselev, M.R., Osnovy sovremennogo elektrokhimicheskogo analiza (Fundamentals of Modern Electrochemical Analysis), Moscow: BINOM. Laboratoriya znanii, 2003.Google Scholar
  38. 38.
    Laviron, E., J. Electroanal. Chem., 1979, vol. 101, no. 1, p.19.CrossRefGoogle Scholar
  39. 39.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2000.Google Scholar
  40. 40.
    Oliveira-Brett, A.M., Piedade, J.A.P., Silva, L.A., and Diculescu, V.C., Anal. Biochem., 2004, vol. 332, no. 2, p. 321.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. G. Shaidarova
    • 1
    Email author
  • A. V. Gedmina
    • 1
  • V. D. Demina
    • 1
  • I. A. Chelnokova
    • 1
  • H. C. Budnikov
    • 1
  1. 1.Butlerov Institute of ChemistryKazan Federal UniversityKazanRussia

Personalised recommendations