Advertisement

Journal of Analytical Chemistry

, Volume 73, Issue 4, pp 351–357 | Cite as

Characterization of Refuse Derived Fuel Using Thermogravimetric Analysis and Chemometric Techniques

  • Panagiotis DaniasEmail author
  • Stylianos Liodakis
Articles

Abstract

An approach for characterization of refuse derived fuel (RDF) using thermogravimetry and chemometric techniques was developed. For this purpose, a series of samples coming from lignocellulosic products (wood, cardboard, paper, newspaper) and plastics (polyethyleneterephthalate, high density polyethylene, polypropylene, polypropylene, nylon and polyvinylchloride), as well as their mixtures, were investigated by means of thermogravimetry (TG) in a temperature range between 25 and 800°C. The datapoints of TG diagrams (weight loss) were then subjected to principal component analysis in order to unravel similarities/ dissimilarities of the investigated samples. A classification was obtained according to their woody/petroleum derived origination. This classification was more evident if partial least square discriminant analysis was employed. Finally, a partial least square analysis was carried out for the determination of lignocellulosic content in the sample. The model was validated by application to samples with known mass fraction of lignocellulosic products. Finally, the model was applied to two RDF samples using fractions of their particle sizes from 1 mm to less than 0.032 mm, and the results were compared with their ultimate and proximate analysis.

Keywords

refuse derived fuel (RDF) lignocellulosic products petroleum derived products thermogravimetry principal component analysis (PCA) partial least square analysis (PLS) partial least square discriminant analysis (PLS–DA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lombardi, L., Carnaevale, E., and Corti, A., Waste Manage., 2015, no. 37, p.26.CrossRefGoogle Scholar
  2. 2.
    Elwan, A., Arief, Y.Z., Muhamad, N.A., Bashir, N., and Adzis, Z., ARPN J. Eng. Appl. Sci., 2014, vol. 9, no. 8, p. 1297.Google Scholar
  3. 3.
    Rada, E.C. and Ragazzi, M., Waste Manage., 2014, vol. 34, p.291.CrossRefGoogle Scholar
  4. 4.
    Torretta, V., Ionescu, G., Raboni, M., and Merler, G., WIT Trans. Ecol. Environ., 2014, vol. 180, p.151.CrossRefGoogle Scholar
  5. 5.
    Montane, D., Abello, S., Farriol, X., and Berrueco, C., Fuel Process. Technol., 2013, vol. 113, p.90.CrossRefGoogle Scholar
  6. 6.
    Tunesi, S., Waste Manage., 2011, vol. 31, no. 3, p.561.CrossRefGoogle Scholar
  7. 7.
    Alter, H., Resour. Conserv., 1987, vol. 15, p.251.CrossRefGoogle Scholar
  8. 8.
    Cimpan, C. and Wenzel, H., Waste Manage., 2013, vol. 33, p. 1648.CrossRefGoogle Scholar
  9. 9.
    Reza, B., Soltani, A., Ruparathna, R., Sadiq, R., and Hewage, K., Resour., Conserv. Recycl., 2013, vol. 81, p.105.CrossRefGoogle Scholar
  10. 10.
    Sorum, L., Gronli, M.G., and Hustad, J.E., Fuel, 2001, vol. 80, p. 1217.CrossRefGoogle Scholar
  11. 11.
    Grammelis, P., Basinas, P., Malliopoulou, A., and Sakellaropoulos, G., Fuel, 2009, vol. 88, p.195.CrossRefGoogle Scholar
  12. 12.
    Agrawal, R.K., Waste Manage. Res., 1988, vol. 6, p.271.CrossRefGoogle Scholar
  13. 13.
    Argawal, R.K., Compositional Analysis of Solid Waste and Refuse Derived Fuels by Thermogravimetry. Compositional Analysis by Thermogravimetry, Philadelphia: ASTM, 1988.Google Scholar
  14. 14.
    Alias, A.B., Rashid, Z.A., Rahman, N.A., and Ghani, W.A.W.A.K., Int. J. Environ. Waste Manage., 2012, vol. 10, no. 4, p.354.CrossRefGoogle Scholar
  15. 15.
    Butterman, H.C., Castaldi, M.J., Gelix, F., Borrut, D., Nicol, F., and Lefebvre, B., Waste Biomass Valorization, 2014, vol. 5, no. 4, p.607.CrossRefGoogle Scholar
  16. 16.
    Li, Y., Wang, H., Li, R., and Chi, Y., Biofuels, 2015, vol. 6, nos. 3-4, p.217.CrossRefGoogle Scholar
  17. 17.
    Silva, R.B., Martins-Dias, S., Arnal, C., Alzueta, M.U., and Costa, M., Energy Fuels, 2015, vol. 29, no. 3, p. 1997.CrossRefGoogle Scholar
  18. 18.
    Elder, J.P., Fuel, 1983, vol. 62, p.580.CrossRefGoogle Scholar
  19. 19.
    Robinson, T., Bronson, B., Gogolek, P., and Mehrani, P., Waste Manage., 2016, vol. 48, p.265.CrossRefGoogle Scholar
  20. 20.
    Christie, O.H.J., Chemom. Intell. Lab. Syst., 1995, vol. 25, p.177.CrossRefGoogle Scholar
  21. 21.
    EN 15442: 2011: Solid Recovered Fuels. Methods for Sampling, British Standards Institution, 2011.Google Scholar
  22. 22.
    Heikkinen, J.M., Hordijk, J.C., de Jong, W., and Spliethoff, H., J. Anal. Appl. Pyrolysis, 2004, vol. 71, p.883.CrossRefGoogle Scholar
  23. 23.
    Raveendran, K., Ganesh, A., and Khilar, K.C., Fuel, 1996, vol. 75, p.987.CrossRefGoogle Scholar
  24. 24.
    Wu, C.H., Chang, C.Y., Hor, J.L., Shih, S.M., Chen, L.W., and Chang, F.W., Waste Manage., 1993, vol. 13, p.221.CrossRefGoogle Scholar
  25. 25.
    Garcia, A., Marcilla, A., and Font, R., Thermochim. Acta, 1995, vol. 254, p.277.CrossRefGoogle Scholar
  26. 26.
    Younan, Y., van Goethem, M.W.M., and Stefanidis, F.D., Comput. Chem. Eng., 2016, vol. 86, p.148.CrossRefGoogle Scholar
  27. 27.
    Schnoller, J., Aschenbrenner, P., Hahn, M., and Fellner, J., Waste Manage. Res., 2014, vol. 32, no. 10, p. 1024.CrossRefGoogle Scholar
  28. 28.
    Schnoller, J., Aschenbrenner, P., Hahn, M., Fellner, J., and Rechberger, H., Waste Manage., 2014, vol. 34, p. 2171.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Laboratory of Inorganic and Analytical Chemistry, Department of Chemical EngineeringNational Technical University of Athens (N.T.U.A.)AthensGreece

Personalised recommendations