Advertisement

Journal of Analytical Chemistry

, Volume 73, Issue 4, pp 374–382 | Cite as

Effect of the Nature of a Quaternary Ammonium Salt and the Addition of a Neutral Carrier on Analytical Characteristics of Sulfate-Selective Electrodes

  • Yu. V. MatveichukEmail author
  • E. M. Rakhman’ko
  • E. B. Okaev
Articles

Abstract

A film polyvinyl chloride sulfate-selective electrode based on the sterically accessible higher quaternary ammonium salt, 3,4,5-tris(dodecyloxy)benzyl(oxyethyl)3trimethylammonium chloride, using 1-bromonapthalene as a plasticizer and heptyl p-trifluoroacetylbenzoate as a solvating agent was developed. The limit of detection of the electrode was 6.7 × 10−7 M, lifetime was 1 month, and the slope of the electrode function was 27 mV/decade. The electrode is selective in the presence of interfering Cl, C2O4, Br, and NO3ions. The interference of carbonate ions was eliminated by maintaining pH at 3.2 ± 0.1. Based on IR spectroscopic and potentiometric studies, it is most likely that the solvation of sulfate ions with heptyl p-trifluoroacetylbenzoate occurs through interaction with the trifluoroacetyl carbonyl carbon atom rather than with hydroxyl groups of the hydrate form.

Keywords

sulfate-selective electrode sterically accessible quaternary ammonium salt heptyl p-trifluoroacetylbenzoate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nishizawa, S., Bühlmann, P., Xiao, K.P., and Umezawa, Y., Anal. Chim. Acta, 1998, vol. 358, no. 1, p.35.CrossRefGoogle Scholar
  2. 2.
    Li, Z.Q., Liu, G.D., Duan, L.M., Shen, G.L., and Yu, R.Q., Anal. Chim. Acta, 1999, vol. 382, nos. 1-2, p.165.CrossRefGoogle Scholar
  3. 3.
    Fibbioli, M., Berger, M., Schmidtchen, F., and Pretsch, E., Anal. Chem., 2000, vol. 72, no. 1, p.156.CrossRefGoogle Scholar
  4. 4.
    Berrocal, M.J., Cruz, A., Badr, I.H.A., and Bachas, L.G., Anal. Chem., 2000, vol. 72, no. 21, p. 5295.CrossRefGoogle Scholar
  5. 5.
    Morigi, M., Scavetta, E., Berrettoni, M., Giorgetti, M., and Tonelli, D., Anal. Chim. Acta, 2001, vol. 439, p.265.CrossRefGoogle Scholar
  6. 6.
    Ganjali, M.R., Pourjavid, M.R., Shamsipur, M., Poursaeri, T., Rezapour, M., Javanbakht, M., and Sharghi, H., Anal. Sci., 2003, vol. 19, p.995.CrossRefGoogle Scholar
  7. 7.
    Othman, A.M., El-Shahawi, M.S., and Abdel-Azeem, M., Anal. Chim. Acta, 2006, vol. 555, p.322.CrossRefGoogle Scholar
  8. 8.
    Ganjali, M.R., Ghorbani, M., Daftari, A., Norouzi, P., Pirelahi, H., and Dargahani, H.D., Bull. Korean Chem. Soc., 2004, vol. 25, no. 2, p.172.CrossRefGoogle Scholar
  9. 9.
    Egorov, V.V., Nazarov, V.A., Okaev, E.B., and Pavlova, T.E., J. Anal. Chem., 2006, vol. 61, no. 4, p.382.CrossRefGoogle Scholar
  10. 10.
    Lomako, S.V., Astapovich, R.I., Nozdrin-Plotnitskaya, O.V., Pavlova, T.E., Shi Lei, Nazarov, V.A., Okaev, E.B., Rakhman’ko, E.M., and Egorov, V.V., Anal. Chim. Acta, 2006, vol. 562, p.216.CrossRefGoogle Scholar
  11. 11.
    Egorov, V.V., Nazarov, V.A., and Okaev, E.B., Vestn. Beloruss. Gos. Univ., Ser. 2, 2005, no. 3, p.9.Google Scholar
  12. 12.
    Okaev, E.B., Vestn. Nats. Akad. Nauk Belarusi, Ser. Khim. Nauk, 2005, no. 1, p.53.Google Scholar
  13. 13.
    Egorov, V.V., Rakhman’ko, E.M., Pomelenok, E.V., and Okaev, E.B., Russ. J. Phys. Chem. A, 2006, vol. 80, no. 6, p.969.CrossRefGoogle Scholar
  14. 14.
    Jenkins, H.D. and Thakur, K.P., J. Chem. Educ., 1979, vol. 56, no. 9, p.576.CrossRefGoogle Scholar
  15. 15.
    Okaev, E.B. and Stanishevskii, L.S., in Khimicheskie tekhnologii funktsional’nykh materialov: Materialy III Mezhdunarodnoi Rossiisko-Kazakhstanskoi nauchnoprakticheskoi konferentsii (Chemical Technologies of Functional Materials: Proc. III Int. Russian-Kazakhstan Scientific and Practical Conference), Novosibirsk: Novosib. Gos. Tekh. Univ., 2017, p.13.Google Scholar
  16. 16.
    Nikol’skii, B.P. and Materova, E.A., Ionoselektivnye elektrody (Ion-Selective Electrodes), Leningrad: Khimiya, 1980.Google Scholar
  17. 17.
    Rakhman’ko, E.M. and Matveichuk, Yu.V., Metody Ob”ekty Khim. Anal., 2015, vol. 10, no. 2, p.61.Google Scholar
  18. 18.
    Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999.Google Scholar
  19. 19.
    Cammann, K., Das Arbeiten mit Ionenselektiven Elektroden (Work with Ion-Selective Electrodes), Heidelberg: Springer, 1977.CrossRefGoogle Scholar
  20. 20.
    Fuoss, R.M., J. Am. Chem. Soc., 1958, vol. 80, p. 5059.CrossRefGoogle Scholar
  21. 21.
    Rakhman’ko, E.M., Sloboda, N.A., and Lagunovich, S.A., Zh. Neorg. Khim., 1990, vol. 35, no. 9, p. 2409.Google Scholar
  22. 22.
    Nazarov, V.A., Andronchik, K.A., Egorov, V.V., Matulis, V.E., and Ivashkevich, O.A., Electroanalysis, 2011, vol. 23, no. 5, p. 1058.CrossRefGoogle Scholar
  23. 23.
    Makarychev-Mikhailov, S., Legin, A., Mortensen, J., Levitchev, S., and Vlasov, Yu., Analyst, 2004, vol. 129, no. 3, p.213.CrossRefGoogle Scholar
  24. 24.
    Stuart, B.H., Infrared Spectroscopy: Fundamentals and Applications, New York: Wiley, 2004.CrossRefGoogle Scholar
  25. 25.
    Smirnova, A.L., Grekovich, A.L., and Materova, E.A., Elektrokhimiya, 1985, vol. 21, p. 1221.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Matveichuk
    • 1
    Email author
  • E. M. Rakhman’ko
    • 1
  • E. B. Okaev
    • 1
  1. 1.Faculty of ChemistryBelarussian State UniversityMinskRepublic of Belarus

Personalised recommendations