Diesel-Range Organics Extraction and Determination in Environmental Samples by Gas Chromatography‒Mass Spectrometry: Headspace Solid Phase Microextraction vs. Solvent Extraction

Abstract

An accurate and sensitive analytical method for the determination of diesel-range organics (DRO) is the basis to monitoring and soil remediation studies. In the present work, the determination of DRO in different water and soil samples was optimized. Solvent extraction procedures, i.e. ultrasonic assisted extraction (USAE) (for water samples) and accelerated solvent extraction (ASE) (for soil samples), and a solvent-free procedure, headspace solid phase microextraction (HS-SPME), were optimized to achieve the highest recoveries for the simultaneous determination of all DRO. One hour of USAE for water samples and ASE of soil samples at 100°C, 2000 psi and two extraction cycles lead to analytical recoveries of 70‒100%. Using HS-SPME, 30 min of incubation at 90°C were sufficient to achieve analytical recoveries up to 90% for water and soil samples. HS-SPME enables higher preconcentration factors, which makes this method more appropriate for samples with trace DRO concentrations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Wang, Z. and Fingas, M., J. Chromatogr. A, 1997, vol. 774, p.51.

    CAS  Article  Google Scholar 

  2. 2.

    Trapp, S., Kohler, A., Larsen, L., Zambrano, K., and Karlson, U., J. Soils Sediments, 2001, vol. 1, p.71.

    CAS  Article  Google Scholar 

  3. 3.

    Wang, Z., Li, K., Fingas, M., Sigouin, L., and Menard, L., J. Chromatogr. A, 2002, vol. 971, p.173.

    CAS  Article  Google Scholar 

  4. 4.

    Bolotnik, T.A., Smolenkov, A.D., Yartsev, S.D., and Shpigun, O.A., Zavod. Lab., Diagn. Mater., 2015, vol. 81, p.6.

    CAS  Google Scholar 

  5. 5.

    Eriksson, M., Swartling, A., and Dalhammar, G., Appl. Microbiol. Biotechnol., 1998, vol. 50, p.129.

    CAS  Article  Google Scholar 

  6. 6.

    Cam, D. and Gagni, S., J. Chomatogr. Sci., 2001, vol. 39, p.481.

    CAS  Article  Google Scholar 

  7. 7.

    Chesler, S.N., Emery, A.P., and Duewer, D.L., J. Chromatogr. A, 1997, vol. 790, p.125.

    CAS  Article  Google Scholar 

  8. 8.

    Richter, B., Accelerated solvent extraction of hydrocarbon contaminants (BTEX, diesel and TPH) in soils, in Dionex Application Note, 2012, p.324. www.dionex. com/en-us/documents/application-notes-updates/lp-84398.html. Accessed July 2016.

    Google Scholar 

  9. 9.

    Schantz, M., Anal. Bioanal. Chem., 2006, vol. 386, p. 1043.

    CAS  Article  Google Scholar 

  10. 10.

    Bronner, G. and Goss, K., Environ. Sci. Technol., 2011, vol. 45, p. 1307.

    CAS  Article  Google Scholar 

  11. 11.

    Chien, S.W., Chen, C.Y., Chang, J.H., Chen, S.H., Wang, M.C., and Mannepalli, M.R., J. Hazard. Mater., 2010, vol. 177, p. 1068.

    CAS  Article  Google Scholar 

  12. 12.

    Hiatt, M., Int. J. Environ. Anal. Chem., 2010, vol. 90, p.591.

    CAS  Article  Google Scholar 

  13. 13.

    Rossell, M., Lacorte, S., and Barceló, D., J. Chromatogr. A, 2006, vol. 1132, p.28.

    Article  Google Scholar 

  14. 14.

    United States Environmental Protection Agency (US EPA), Method 8015C: Nonhalogenated Organics by Gas Chromatography, Revision 3, US Environmental Protection Agency, 2007. www.epa.gov/hw-sw846/sw-846-testmethod-8015c-nonhalogenated-organics-gas-chromatography. Accessed November 2016.

  15. 15.

    United States Environmental Protection Agency (US EPA), Method 8270D: Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), Revision 4, US Environmental Protection Agency, 2007. www.epa.gov/hw-sw846/sw-846-testmethod-8270d-semivolatile-organic-compounds-gaschromatographymass-spectrometry. Accessed July 2016.

  16. 16.

    United States Environmental Protection Agency (US EPA), Method 5021A: Volatile Organic Compounds in Various Sample Matrices Using Equilibrium Headspace Analysis, Revision 1, US Environmental Protection Agency, 2003. www.epa.gov/hw-sw846/sw-846-testmethod-5021a-volatile-organic-compounds-vocs-various-sample-matrices-using. Accessed July 2016.

  17. 17.

    United States Environmental Protection Agency (US EPA), Method 3545A: Pressurized Fluid Extraction (PFE), Revision 1, US Environmental Protection Agency, 2007. www.epa.gov/hw-sw846/sw-846-testmethod-3545a-pressurized-fluid-extraction-pfe. Accessed July 2016.

  18. 18.

    García-Pinto, C., Herrero Martín, S., Pérez Pavón, J.L., and Moreno Cordero, B., Anal. Chim. Acta, 2011, vol. 689, p.129.

    Article  Google Scholar 

  19. 19.

    United States Environmental Protection Agency (US EPA), Method 3550C: Ultrasonic Extraction, Revision 3, US Environmental Protection Agency, 2007. www.epa.gov/hw-sw846/sw-846-test-method-3550c-ultrasonic-extraction. Accessed July 2016.

  20. 20.

    Balseiro-Romero, M. and Monterroso, C., Soil Sci. Soc. Am. J., 2013, vol. 77, p. 800.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to María Balseiro-Romero.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balseiro-Romero, M., Monterroso, C. Diesel-Range Organics Extraction and Determination in Environmental Samples by Gas Chromatography‒Mass Spectrometry: Headspace Solid Phase Microextraction vs. Solvent Extraction. J Anal Chem 73, 292–301 (2018). https://doi.org/10.1134/S1061934818030085

Download citation

Keywords

  • diesel-range organics
  • ultrasonic assisted extraction
  • accelerated solvent extraction
  • HS-SPME
  • water and soil samples