Journal of Analytical Chemistry

, Volume 73, Issue 3, pp 266–276 | Cite as

Synergistic Hybrid Catalyst for Ethanol Detection: Enhanced Performance of Platinum Palladium Bimetallic Nanoparticles Decorated Graphene on Glassy Carbon Electrode

  • Manne Anupam Kumar
  • Sai Gourang Patnaik
  • V. Lakshminarayanan
  • Sai Sathish Ramamurthy
Articles
  • 26 Downloads

Abstract

The present study highlights the first time use of hybrid synergy electrocatalysis to design a cost effective, non-enzymatic ethanol sensor. The nanohybrid has been synthesized by decorating platinum palladium bimetallic nanoparticles (Pt‒PdNPs) on graphene nanosheets (G/Pt‒PdNPs). Field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, electrochemical measurements and UV-Vis spectrophotometry have been used to characterize the nanocomposite. An ethanol oxidation current of 332 μA was obtained with the use of G/Pt‒PdNPs modified glassy carbon electrode (GCE) that is 167 times higher than that of bare GCE in cyclic voltammetry studies with a potential scan rate of 50 mV/s in 0.1 M NaOH as the supporting electrolyte. Chronoamperometry studies have shown a distinct increase in the current for increasing concentration of ethanol with a wide range of linearity extending from 5 mM to 3 M and a detection limit of 1 mM with the use of G/Pt‒PdNPs. Quantum mechanical modeling using density functional theory was used to arrive at the minimization energies of G/Pd, G/Pt and G/Pt‒Pd in the presence and absence of ethanol. The improved catalytic activity of G/Pt‒PdNPs nanocomposite for ethanol detection is on account of the cooperative effects of Pt and PdNPs, coupled with the high conducting nature of graphene.

Keywords

ethanol sensor graphene palladium platinum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mandenius, C.F., Hedman, T., and Mattiasson, B., J. Inst. Brew., 1984, vol. 90, p.77.CrossRefGoogle Scholar
  2. 2.
    Kucherenko, Y.U. and Moiseev, V.A., Membr. Cell. Biol., 2000, vol. 13, p.633.Google Scholar
  3. 3.
    Elefant, M. and Talmage, J.M., J. Pharm. Sci., 1967, vol. 56, p.133.CrossRefGoogle Scholar
  4. 4.
    Rosendal, I. and Schmidt, F., J. Inst. Brew., 1987, vol. 93, p.373.CrossRefGoogle Scholar
  5. 5.
    Mazzotta, E., Malitesta, C., and Margapoti, E., Anal. Bioanal. Chem., 2013, vol. 405, p. 3587.CrossRefGoogle Scholar
  6. 6.
    Kimmel, D.W., LeBlanc, G., Meschievitz, M.E., and Cliffel, D.E., Anal. Chem., 2012, vol. 84, p.685.CrossRefGoogle Scholar
  7. 7.
    Safavi, A. and Tohidi, M., Electroanalysis, 2012, vol. 24, p. 1453.CrossRefGoogle Scholar
  8. 8.
    Chen, Y., Chen, K.Y., and Tseung, A.C.C., J. Electroanal. Chem., 1999, vol. 471, p.151.CrossRefGoogle Scholar
  9. 9.
    Xu, C., Wang, J., and Zhou, J., Sens. Actuators, B, 2013, vol. 182, p.408.CrossRefGoogle Scholar
  10. 10.
    Xu, C., Sun, F., Gao, H., and Wang, J., Anal. Chim. Acta, 2013, vol. 780, p.20.CrossRefGoogle Scholar
  11. 11.
    Weng, Y.C. and Chou, T.C., Ethanol sensors by using RuO, p.2.Google Scholar
  12. 12.
    Jia, L.P. and Wang, H.S., Sens. Actuators, B, 2013, vol. 177, p. 1035.CrossRefGoogle Scholar
  13. 13.
    Tao, B., Zhang, J., Hui, S., and Wan, L., Sens. Actuators, B, 2009, vol. 142, p.298.CrossRefGoogle Scholar
  14. 14.
    Sau, T.K. and Rogach, A.L., Adv. Mater., 2010, vol. 22, p. 1781.CrossRefGoogle Scholar
  15. 15.
    Siddhardha, R.S.S., Kumar, M.A., Lakshminarayanan, V., and Ramamurthy, S.S., J. Power Sources, 2014, vol. 271, p.305.CrossRefGoogle Scholar
  16. 16.
    Guo, S. and Wang, E., Nano Today, 2011, vol. 6, p.240.CrossRefGoogle Scholar
  17. 17.
    Siddhardha, R.S.S., Lakshminarayanan, V., and Ramamurthy, S.S., J. Power Sources, 2015, vol. 288, p.441.CrossRefGoogle Scholar
  18. 18.
    Kumar, V.L., Siddhardha, R.S.S., Kaniyoor, A., Podila, R., Molli, M., Kumar, S.M., Venkataramaniah, K., Ramaprabhu, S., Rao, A.M., and Ramamurthy, S.S., Electroanalysis, 2014, vol. 26, p. 1850.CrossRefGoogle Scholar
  19. 19.
    Kumar, L.V., Ntim, S.A., Sae-Khow, O., Janardhana, C., Lakshminarayanan, V., and Mitra, S., Electrochim. Acta, 2012, vol. 83, p.40.CrossRefGoogle Scholar
  20. 20.
    Chen, K.-J., Lee, C.-F., Rick, J., Wang, S.-H., Liu, C.-C., and Hwang, B.-J., Biosens. Bioelectron., 2012, vol. 33 p, p.75.CrossRefGoogle Scholar
  21. 21.
    Huang, M., Li, L., and Guo, Y., J. Solid State Electrochem., 2009, vol. 13, p. 1403.CrossRefGoogle Scholar
  22. 22.
    Miecznikowski, K., J. Solid State Electrochem., 2012, vol. 16, p. 2723.CrossRefGoogle Scholar
  23. 23.
    Xiao, F., Zhao, F., Mei, D., Mo, Z., and Zeng, B., Biosens. Bioelectron., 2009, vol. 24, p. 3481.CrossRefGoogle Scholar
  24. 24.
    Hossain, M.F. and Park, J.Y., Electroanalysis, 2014, vol. 26, p.940.CrossRefGoogle Scholar
  25. 25.
    Wang, C., Peng, B., Xie, H.-N., Zhang, H.-X., Shi, F.-F., and Cai, W.-B., J. Phys. Chem. C, 2009, vol. 113, p. 13841.CrossRefGoogle Scholar
  26. 26.
    Yang, X., Yang, Q., Xu, J., and Lee, C.-S., J. Mater. Chem., 2012, vol. 22, p. 8057.CrossRefGoogle Scholar
  27. 27.
    Geim, A.K. and Novoselov, K.S., Nat. Mater., 2007, vol. 6, p.183.CrossRefGoogle Scholar
  28. 28.
    Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., and Govindaraj, A., Angew. Chem., Int. Ed., 2009, vol. 48, p. 7752.CrossRefGoogle Scholar
  29. 29.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Science, 2004, vol. 306, p.666.CrossRefGoogle Scholar
  30. 30.
    Gilje, S., Han, S., Wang, M., Wang, K.L., and Kaner, R.B., Nano Lett., 2007, vol. 7, p. 3394.CrossRefGoogle Scholar
  31. 31.
    Li, D. and Kaner, R.B., Science, 2008, vol. 320, p. 1170.CrossRefGoogle Scholar
  32. 32.
    Liu, Y., Chi, M., Mazumder, V., More, K.L., Soled, S., Henao, J.D., and Sun, S., Chem. Mater., 2011, vol. 23, p. 4199.CrossRefGoogle Scholar
  33. 33.
    Mazumder, V. and Sun, S., J. Am. Chem. Soc., 2009, vol. 131, p. 4588.CrossRefGoogle Scholar
  34. 34.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.CrossRefGoogle Scholar
  35. 35.
    Hehre, W.J., Stewart, R.F., and Pople, J.A., J. Chem. Phys., 1969, vol. 51, p. 2657.CrossRefGoogle Scholar
  36. 36.
    Collins, J.B., Schleyer, P., Binkley, J.S., and Pople, J.A., J. Chem. Phys., 1976, vol. 64, p. 5142.CrossRefGoogle Scholar
  37. 37.
    Durbin, D.J. and Malardier-Jugroot, C., Mol. Simul., 2012, vol. 38, p. 1061.CrossRefGoogle Scholar
  38. 38.
    Groves, M.N., Chan, A.S.W., Malardier-Jugroot, C., and Jugroot, M., Chem. Phys. Lett., 2009, vol. 481, p.214.CrossRefGoogle Scholar
  39. 39.
    Durbin, D.J.D. and Malardier-Jugroot, C., J. Phys. Chem. C, 2011, vol. 115, p.808.CrossRefGoogle Scholar
  40. 40.
    Gilje, S., Kaner, R.B., Wallace, G.G., Li, D.A.N., and Mu, M.B., Nat. Nano, 2008, vol. 3, p.101.CrossRefGoogle Scholar
  41. 41.
    Sharma, S., Kim, B., and Lee, D., Langmuir, 2012, vol. 28, p. 15958.CrossRefGoogle Scholar
  42. 42.
    Wang, Q., Wang, Y., Guo, P., Li, Q., Ding, R., Wang, B., Li, H., Liu, J., and Zhao, X.S., Langmuir, 2014, vol. 30, p.440.CrossRefGoogle Scholar
  43. 43.
    Liu, S.Y., Shen, Y.T., Chiu, C.Y., Rej, S., Lin, P.H., Tsao, Y.C., and Huang, M.H., Langmuir, 2015, vol. 31, p. 6538.CrossRefGoogle Scholar
  44. 44.
    Chen, Y., Li, Y., Sun, D., Tian, D., Zhang, J., and Zhu, J.J., J. Mater. Chem., 2011, vol. 21, p. 7604.CrossRefGoogle Scholar
  45. 45.
    Li, S., Deng, D.H., Pang, H., Liu, L., Xing, Y., and Liu, S.R., J. Solid State Electrochem., 2012, vol. 16, p. 2883.CrossRefGoogle Scholar
  46. 46.
    Zhao, Y., Song, X., Song, Q., and Yin, Z., CrystEng-Comm, 2012, vol. 14, p. 6710.CrossRefGoogle Scholar
  47. 47.
    Yue, Y., Hu, G., Zheng, M., Guo, Y., Cao, J., and Shao, S., Carbon, 2012, vol. 50, p.107.CrossRefGoogle Scholar
  48. 48.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2000.Google Scholar
  49. 49.
    Hosseini, J. and Bodaghi, A., J. Solid State Electrochem., 2011, vol. 15, p.795.CrossRefGoogle Scholar
  50. 50.
    Guo, D.-J. and Cui, S.-K., J. Solid State Electrochem., 2008, vol. 12, p. 1393.CrossRefGoogle Scholar
  51. 51.
    Jiang, F., Yao, Z., Yue, R., Xu, J., Du, Y., Yang, P., and Wang, C., J. Solid State Electrochem. 2013, vol. 17, p. 1039.CrossRefGoogle Scholar
  52. 52.
    Schmiemann, U., Muller, U., and Baltruschat, H., Electrochim. Acta, 1995, vol. 40, p.99.CrossRefGoogle Scholar
  53. 53.
    Liu, J., Ye, J., Xu, C., Jiang, S.P., and Tong, Y., Electrochem. Commun., 2007, vol. 9, p. 2334.CrossRefGoogle Scholar
  54. 54.
    Liang, Z.X., Zhao, T.S., Xu, J.B., and Zhu, L.D., Electrochim. Acta, 2009, vol. 54, p. 2203.CrossRefGoogle Scholar
  55. 55.
    Pandey, R.K. and Lakshminarayanan, V., J. Phys. Chem. C, 2010, vol. 114, p. 8507.CrossRefGoogle Scholar
  56. 56.
    Pandey, R.K. and Lakshminarayanan, V., Appl. Catal., B, 2012, vol. 125, p.271.CrossRefGoogle Scholar
  57. 57.
    Qin, Y.-H., Yang, H.-H., Zhang, X.-S., Li, P., Zhou, X.-G., Niu, L., and Yuan, W.-K., Carbon, 2010, vol. 48, p. 3323.CrossRefGoogle Scholar
  58. 58.
    Lai, S.C.S. and Koper, M.T.M., Faraday Discuss., 2009, vol. 140, p.399.CrossRefGoogle Scholar
  59. 59.
    Weng, Y.-C., Rick, J.F., and Chou, T.-C., Biosens. Bioelectron., 2004, vol. 20, p.41.CrossRefGoogle Scholar
  60. 60.
    Yang, D.-W. and Liu, H.-H., Biosens. Bioelectron., 2009, vol. 25, p.733.CrossRefGoogle Scholar
  61. 61.
    Fu, X., Zhang, H., Xiao, J., and Liu, S., J. Cent. South Univ., 2012, vol. 19, p. 3040.CrossRefGoogle Scholar
  62. 62.
    Nie, Z., Deiss, F., Liu, X., Akbulut, O., and Whitesides, G.M., Lab Chip, 2010, vol. 10, p. 3163.CrossRefGoogle Scholar
  63. 63.
    Khan, S.B., Rahman, M.M., Akhtar, K., Asiri, A.M., Seo, J., Han, H., and Alamry, K., Int. J. Electrochem. Sci., 2012, vol. 7, p. 4030.Google Scholar
  64. 64.
    Shi, J., Ci, P., Wang, F., Peng, H., Yang, P., Wang, L., Wang, Q., and Chu, P.K., Electrochim. Acta, 2011, vol. 56, p. 4197.CrossRefGoogle Scholar
  65. 65.
    Warriner, K., Morrissey, A., Alderman, J., King, G., Treloar, P., and Vadgama, P.M., Sens. Actuators, B, 2002, vol. 84, p.200.CrossRefGoogle Scholar
  66. 66.
    Huang, H.-Y. and Chen, P.-Y., Talanta, 2010, vol. 83, p. 379.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Manne Anupam Kumar
    • 1
  • Sai Gourang Patnaik
    • 1
  • V. Lakshminarayanan
    • 2
  • Sai Sathish Ramamurthy
    • 1
  1. 1.Department of ChemistrySri Sathya Sai Institute of Higher LearningPrashanthi Nilayam, A.P-India
  2. 2.Soft Condensed Matter LaboratoryRaman Research InstituteBangalore, Karnataka-India

Personalised recommendations