Skip to main content
Log in

Predictive Liquid Chromatography of Peptides Based on Hydrophilic Interactions for Mass Spectrometry-Based Proteomics

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

High-performance liquid chromatography (HPLC) is widely used for separation of complex peptide mixtures before mass spectrometry-based proteome analysis. In this analysis, reversed phase HPLC (RPHPLC) using non-polar stationary phases such as surface-modified silica containing alkyl groups (e.g., C18) is typically employed. Because of the high heterogeneity of proteomic samples, multidimensional separation approaches gained increasing attention recently to tackle this complexity and extremely high range of concentrations. In two-dimensional liquid chromatography, hydrophilic interaction chromatography (HILIC) is often a method of choice for combination with RP-HPLC because it uses reversed-phase type eluents and allows efficient separation of polar peptides. Due to the high degree of orthogonality in this two-dimensional separation space, it is tempting to develop approaches for predicting peptide retention times for HILIC-based separations similar to the ones for RP-HPLC. Recent successful efforts in this area were focused on developing retention coefficient (RC)-based approaches. Herein, we explored the feasibility of using a statistical thermodynamic model for prediction of peptide retention times in HILIC separations and determined the phenomenological parameters of the model for a bare silica column. The performance of the developed model was tested using HPLC-MS analysis of a set of synthetic peptides, as well as a tryptic peptide mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aebersold, R. and Mann, M., Nature, 2003, vol. 422, no. 6928, p. 198.

    Article  CAS  Google Scholar 

  2. Corthals, C.L., Wasinger, V.C., Hochstrasser, D.F., and Sanchez, J.C., Electrophoresis, 2000, vol. 21, no. 6, p. 1104.

    Article  CAS  Google Scholar 

  3. Camerini, S. and Mauri, P., J. Chromatogr. A, 2015, vol. 1381, p. 1.

    Article  CAS  Google Scholar 

  4. Lee, W.C. and Lee, K.H., Anal. Biochem., 2004, vol. 324, no. 1, p. 1.

    Article  CAS  Google Scholar 

  5. Phillips, H.L., Williamson, J.C., Van Elburg, K.A., Snijders, A.P.L., Wright, P.C., and Dickman, M.J., Proteomics, 2010, vol. 10, no. 16, p. 2950.

    Article  CAS  Google Scholar 

  6. Du, P., Stolovitzky, G., Horvatovich, P., Bischoff, R., Lim, J., and Suits, F., Bioinformatics, 2008, vol. 24, no. 8, p. 1070.

    Article  CAS  Google Scholar 

  7. Horvatovich, P., Hoekman, B., Govorukhina, N., and Bischoff, R., J. Sep. Sci., 2010, vol. 33, no. 10, p. 1421.

    Article  CAS  Google Scholar 

  8. Zhao, Y., Kong, R.P.W., Li, G., Lam, M.P.Y., Law, C.H., Lee, S.M.Y., Lam, H.C., and Chu, I.K., J. Sep. Sci., 2012, vol. 35, no. 14, p. 1755.

    Article  CAS  Google Scholar 

  9. Di Palma, S., Hennrich, M.L., Heck, A.J.R., and Mohammed, S., J. Proteomics, 2012, vol. 75, no. 13, p. 3791.

    Article  Google Scholar 

  10. Lenz, C. and Urlaub, H., Expert Rev. Proteomics, 2014, vol. 11, no. 4, p. 409.

    Article  CAS  Google Scholar 

  11. Palmblad, M., Retention time prediction and protein identification, in Methods in Molecular Biology, 2007, p. 195.

    Google Scholar 

  12. Babushok, V.I. and Zenkevich, I.G., Chromatographia, 2010, vol. 72, nos. 9–10, p. 781.

    Article  CAS  Google Scholar 

  13. Baczek, T. and Kaliszan, R., Proteomics, 2009, vol. 9, no. 4, p. 835.

    Article  CAS  Google Scholar 

  14. Tarasova, I.A., Masselon, C.D., Gorshkov, A.V., and Gorshkov, M.V., Analyst, 2016, vol. 141, no. 16, p. 4816.

    Article  CAS  Google Scholar 

  15. Moruz, L. and Kall, L., Mass Spectrom. Rev., 2016, vol. 9999, p. 1.

    Google Scholar 

  16. Moruz, L., Pichler, P., Stranzl, T., Mechtler, K., and Kall, L., Anal. Chem., 2013, vol. 85, no. 16, p. 7777.

    Article  CAS  Google Scholar 

  17. Moruz, L., Tomazela, D., and Kall, L., J. Proteome Res., 2010, vol. 9, no. 10, p. 5209.

    Article  CAS  Google Scholar 

  18. Tarasova, I.A., Guryca, V., Pridatchenko, M.L., Gorshkov, A.V., Kieffer-Jaquinod, S., Evreinov, V.V., Masselon, C.D., and Gorshkov, M.V., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2009, vol. 877, no. 4, p. 433.

    Article  CAS  Google Scholar 

  19. Pfeifer, N., Leinenbach, A., Huber, C.G., and Kohlbacher, O., J. Proteome Res., 2009, vol. 8, no. 8, p. 4109.

    Article  CAS  Google Scholar 

  20. Palmblad, M., Ramstrom, M., Markides, K.E., Hakansson, P., and Bergquist, J., Anal. Chem., 2002, vol. 74, no. 22, p. 5826.

    Article  CAS  Google Scholar 

  21. Klammer, A.A., Yi, X., Maccoss, M.J., and Noble, W.S., Anal. Chem., 2007, vol. 79, no. 16, p. 6111.

    Article  CAS  Google Scholar 

  22. Meek, J.L., Proc. Natl. Acad. Sci. U. S. A., 1980, vol. 77, no. 3, p. 1632.

    Article  CAS  Google Scholar 

  23. Pfeifer, N., Leinenbach, A., Huber, C.G., and Kohlbacher, O., BMC Bioinf., 2007, vol. 8, no. 1, p. 468.

    Article  Google Scholar 

  24. Petritis, K., Kangas, L.J., Ferguson, P.L., Anderson, G.A., Pasa-Tolic, L., Lipton, M.S., Auberry, K.J., Strittmatter, E.F., Shen, Y., Zhao, R., and Smith, R.D., Anal. Chem., 2003, vol. 75, no. 5, p. 1039.

    Article  CAS  Google Scholar 

  25. Petritis, K., Kangas, L.J., Yan, B., Monroe, M.E., Strittmatter, E.F., Qian, W.-J., Adkins, J.N., Moore, R.J., Xu, Y., Lipton, M.S., Camp, D.G., and Smith, R.D., Anal. Chem., 2006, vol. 78, no. 14, p. 5026.

    Article  CAS  Google Scholar 

  26. Krokhin, O.V., Craig, R., Spicer, V., Ens, W., Standing, K.G., Beavis, R.C., and Wilkins, J.A., Mol. Cell. Proteomics, 2004, vol. 3, no. 9, p. 908.

    Article  CAS  Google Scholar 

  27. Bodzioch, K., Durand, A., Kaliszan, R., Baczek, T., and Vander Heyden, Y., Talanta, 2010, vol. 81, nos. 4–5, p. 1711.

    Article  CAS  Google Scholar 

  28. Gorshkov, A.V., Evreinov, V.V., Tarasova, I.A., and Gorshkov, M.V., Polym. Sci., Ser. B, 2007, vol. 49, nos. 3–4, p. 93.

    Article  Google Scholar 

  29. Tarasova, I.A., Gorshkov, A.V., Evreinov, V.V., Adams, K., Zubarev, R.A., and Gorshkov, M.V., Polym. Sci., Ser. A, 2008, vol. 50, no. 3, p. 309.

    Article  Google Scholar 

  30. Dwivedi, R.C., Spicer, V., Harder, M., Antonovici, M., Ens, W., Standing, K.G., Wilkins, J.A., and Krokhin, O.V., Anal. Chem., 2008, vol. 80, no. 18, p. 7036.

    Article  CAS  Google Scholar 

  31. Gilar, M., Olivova, P., Daly, A.E., and Gebler, J.C., Anal. Chem., 2005, vol. 77, no. 19, p. 6426.

    Article  CAS  Google Scholar 

  32. Gama, M.R., Costa Silva, R.G., Collins, C.H., and Bottoli, C.B.G., TrAC, Trends Anal. Chem., 2012, vol. 37, p. 48.

    Article  CAS  Google Scholar 

  33. Yoshida, T., J. Chromatogr. A, 1998, vol. 808, nos. 1–2, p. 105.

    Article  CAS  Google Scholar 

  34. Gilar, M. and Jaworski, A., J. Chromatogr. A, 2011, vol. 1218, no. 49, p. 8890.

    Article  CAS  Google Scholar 

  35. Harscoat-Schiavo, C., Nioi, C., Ronat-Heit, E., Paris, C., Vanderesse, R., Fournier, F., and Marc, I., Anal. Bioanal. Chem., 2012, vol. 403, no. 7, p. 1939.

    Article  CAS  Google Scholar 

  36. Le Maux, S. and Nongonierma, A.B., Food Chem., 2015, vol. 173, p. 847.

    Article  Google Scholar 

  37. Tarasova, I.A., Goloborodko, A.A., Perlova, T.Y., Pridatchenko, M.L., Gorshkov, A.V., Evreinov, V.V., Ivanov, A.R., and Gorshkov, M.V., Anal. Chem., 2015, vol. 87, no. 13, p. 6562.

    Article  CAS  Google Scholar 

  38. Reimer, J., Spicer, V., and Krokhin, O.V., J. Chromatogr. A, 2012, vol. 1256, p. 160.

    Article  CAS  Google Scholar 

  39. Hemstrom, P. and Irgum, K., J. Sep. Sci., 2006, vol. 29, no. 12, p. 1784.

    Article  Google Scholar 

  40. Alpert, A.J., J. Chromatogr. A, 1990, vol. 499, p. 177.

    Article  CAS  Google Scholar 

  41. Soukup, J. and Jandera, P., J. Chromatogr. A, 2014, vol. 1374, p. 102.

    Article  CAS  Google Scholar 

  42. Moskovets, E., Goloborodko, A.A., Gorshkov, A.V., and Gorshkov, M.V., J. Sep. Sci., 2012, vol. 35, no. 14, p. 1771.

    Article  CAS  Google Scholar 

  43. Craig, R. and Beavis, R.C., Bioinformatics, 2004, vol. 20, no. 9, p. 1466.

    Article  CAS  Google Scholar 

  44. Ivanov, M.V., Levitsky, L.I., Lobas, A.A., Panic, T., Laskay, U.A., Mitulovic, G., Schmid, R., Pridatchenko, M.L., Tsybin, Y.O., and Gorshkov, M.V., J. Proteome Res., 2014, vol. 13, no. 4, p. 1911.

    Article  CAS  Google Scholar 

  45. Goloborodko, A.A., Levitsky, L.I., Ivanov, M.V., and Gorshkov, M.V., J. Am. Soc. Mass Spectrom., 2013, vol. 24, no. 2, p. 301.

    Article  CAS  Google Scholar 

  46. Kall, L., Canterbury, J.D., Weston, J., and Noble, W.S., Nat. Methods, 2007, vol. 4, no. 11, p. 923.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Gorshkov.

Additional information

Original Russian Text © A.A. Lobas, L.I. Levitsky, A. Fichtenbaum, A.K. Surin, M.L. Pridatchenko, G. Mitulovic, A.V. Gorshkov, M.V. Gorshkov, 2017, published in Mass-spektrometriya, 2017, Vol. 14, No. 2, pp. 79–88.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobas, A.A., Levitsky, L.I., Fichtenbaum, A. et al. Predictive Liquid Chromatography of Peptides Based on Hydrophilic Interactions for Mass Spectrometry-Based Proteomics. J Anal Chem 72, 1375–1382 (2017). https://doi.org/10.1134/S1061934817140076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934817140076

Keywords

Navigation