Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 14, pp 1441–1445 | Cite as

Peculiarities of the Mass Spectrometric Detection of Anthocyanins in High-Performance Liquid Chromatography

  • V. I. DeinekaEmail author
  • A. N. Sidorov
  • A. N. Chulkov
  • L. A. Deineka
Articles
  • 21 Downloads

Abstract

The dependence of the degree of fragmentation of anthocyanin “molecular” ions on the cone voltage of a mass spectrometric electrospray ionization detector was studied. It was found that the voltage required for the fragmentation of 50% of original “molecular” ions, E f (0.5), increased with the number of glycoside residues. The fragmentation of glycosides proceeds with the removal of the entire residue regardless of their structures. In the case of 3,5-diglycosides, two types of fragment ions formed due to the loss of glycosidic residues from different positions; the ratio of their peak intensities is reciprocal to the ratio of the masses of residues eliminated. The values of E f (0.5) for monoglycosides (190 V), diglycosides (229 V), triglycosides (267 V), and for some acylated cyanidin-3,5-diglycosides are determined. These results were given for the gradient separation of anthocyanins by reversed-phase HPLC in aqueous acetonitrile containing 10 vol % of formic acid using quadrupole mass spectrometric detection.

Keywords

anthocyanins HPLC mass spectrometric detector electrospray voltage of 50% fragmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yamashita, M. and Fenn, J.B., J. Phys. Chem., 1984, vol. 88, no. 20, p. 4451.CrossRefGoogle Scholar
  2. 2.
    Deineka, V.I., Deineka, L.A., and Saenko, I.I., J. Anal. Methods Chem., 2015, ID 732918.Google Scholar
  3. 3.
    Welch C.R., Wu, Q., and Simon, J.E., Curr. Anal. Chem., 2008, vol. 4, no. 2, p. 75.CrossRefGoogle Scholar
  4. 4.
    Handbook of Anthocyanins: Food Sources, Chemical Applications and Health Benefits. Biochemistry Research Trends, Warner, L.M., Ed., New York: Nova Science, 2015.Google Scholar
  5. 5.
    Giusti, M., Rodriguez-Saona, L.E., Griffin, D., and Wrolstad, R.E., J. Agric. Food Chem., 1999, vol. 47, no. 11, p. 4657.CrossRefGoogle Scholar
  6. 6.
    Flamini, R., Mass Spectrom. Rev., 2003, vol. 22, no. 4, p. 218.CrossRefGoogle Scholar
  7. 7.
    Lee, J.H., Kang, N.S., Shin, S.-O., Shin, S.-H., Lim, S.-G., Suh, D.-Y., Baek, I.-Y., Park, K.-Y., and Ha, T.J., Food Chem., 2009, vol. 112, no. 1, p. 226.CrossRefGoogle Scholar
  8. 8.
    Wang, X., Hansen, C., and Allen, K., Food Nutr. Sci., 2013, vol. 4, no. 8A, p. 174.CrossRefGoogle Scholar
  9. 9.
    Liu, G.-L., Guo, H.-H., and Sun, Y.-M., Int. J. Mol. Sci., 2012, vol. 13, no. 5, p. 6292.CrossRefGoogle Scholar
  10. 10.
    Deineka, V.I., Deineka, L.A., Sidorov, A.N., Kostenko, M.O., and Blinova, I.P., Russ. J. Phys. Chem. A, 2016, vol. 90, no. 4, p. 861.CrossRefGoogle Scholar
  11. 11.
    Goiffon, J.-P., Brun, M., and Bourrier, M.-J., J. Chromatogr. A, 1991, vol. 537, p. 101.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. I. Deineka
    • 1
    Email author
  • A. N. Sidorov
    • 1
  • A. N. Chulkov
    • 2
  • L. A. Deineka
    • 1
  1. 1.Institute of Engineering, Technologies and Natural SciencesBelgorod National Research UniversityBelgorodRussia
  2. 2.Belgorod BranchFederal Centre of Quality and Safety Assurance for Grain and Grain ProductsBelgorodRussia

Personalised recommendations