Journal of Analytical Chemistry

, Volume 72, Issue 14, pp 1434–1440 | Cite as

A New Method of Mathematical Correction of the Results of Analysis, Obtained by Inductively Coupled Plasma Mass Spectrometry, Ensuring the Elimination of the Interference of Doubly Charged Ions

  • K. I. CherviakouskiEmail author


A new method of mathematical correction of the results of analysis, obtained by inductively coupled plasma mass spectrometry, for the elimination of the interference of doubly charged ion was proposed. This method bases on the use recording isotope signals in two operation modes of the spectrometer:standard and with using a collision cell (Kinetic energy discrimination/KED mode). The mathematical correction of the results of arsenic determination in model solutions was performed using two processes, standard and proposed in this paper. The accuracy and repeatability of the results were compared.


inductively coupled plasma mass spectrometry interference of doubly charged ions mathematical correction of results collision cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leykin, A.Yu. and Yakimovich, P.V., J. Anal. Chem., 2012, vol. 67, no. 8, p. 752.CrossRefGoogle Scholar
  2. 2.
    Aras, N.K. and Ataman, O.Y., Trace Element Analysis of Food and Diet, Cambridge: RSC, 2006.Google Scholar
  3. 3.
    Inductively coupled plasma-mass spectrometric determination of arsenic, cadmium, chromium, lead, mercury and other elements in food using microwave assisted digestion, Ver. 1.1, Elemental Analysis Manual for Food and Related Products, U.S. Food and Drug Administration, 2015. 005.pdf. Cited May 13, 2016.Google Scholar
  4. 4.
    Yakimovich, P.V. and Alekseev, A.V., Tr. Vseross. Inst. Aviats. Mater., 2015, no. 3. Cited May 13, 2016.Google Scholar
  5. 5.
    D’Ilio, S., Violante, N., Majorani, C., and Petrucci, F., Anal. Chim. Acta, 2011, vol. 698, no. 1, p. 6.CrossRefGoogle Scholar
  6. 6.
    Harrington, C.F., Walter, A., Nelms, S., and Taylor, A., Ann. Clin. Biochem., 2014, vol. 51, no. 3, p. 386.CrossRefGoogle Scholar
  7. 7.
    Jackson, B.P., Liba, A., and Nelson, J., J. Anal. At. Spectrom., 2015, vol. 30, no. 5, p. 1179.CrossRefGoogle Scholar
  8. 8.
    Bishop, D.P., Hare, D.J., Fryer, F., Taudte, R.V., Cardoso, B.R., Colea, N., and Doble, P.A., Analyst, 2015, vol. 140, no. 8, p. 2842.CrossRefGoogle Scholar
  9. 9.
    Yamada, N., Spectrochim. Acta, Part B, 2015, vol. 110, p. 31.CrossRefGoogle Scholar
  10. 10.
    Karandashev, V.K., Turanov, A.N., Orlova, T.A., Lezhnev, A.E., Nosenko, S.V., Zolotareva, N.I., and Moskvina, I.R., Zavod. Lab., Diagn. Mater., 2007, vol. 73, no. 1, p. 12.Google Scholar
  11. 11.
    Allain, P., Jaunault, L., Mauras, Y., Mermet, J.M., and Delaporte, T., Anal. Chem., 1991, vol. 63, no. 14, p. 1497.CrossRefGoogle Scholar
  12. 12.
    Larsen, E.H. and Sturup, S., J. Anal. At. Spectrom., 1994, vol. 9, no. 10, p. 1099.CrossRefGoogle Scholar
  13. 13.
    Kovačevič, M. and Goessler, W., Spectrochim. Acta, Part B, 2005, vol. 60, p. 1357.CrossRefGoogle Scholar
  14. 14.
    Nakazawa, T., Suzuki, D., Sakuma, H., and Furuta, N., J. Anal. At. Spectrom., 2014, vol. 29, no. 7, p. 1299.CrossRefGoogle Scholar
  15. 15.
    Pettine, M., Casentini, B., Mastroianni, D., and Capri, S., Anal. Chim. Acta, 2007, vol. 599, no. 2, p. 191.CrossRefGoogle Scholar
  16. 16.
    Grindlay, G., Mora, J., de Loos-Vollebregt, M., and Vanhaecke, F., Spectrochim. Acta, Part B, 2013, vol. 86, p. 42.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Phytoengineering R&D CenterRogachevo, Moscow oblastRussia

Personalised recommendations