Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 13, pp 1322–1330 | Cite as

Interpretation and Simulation of Negative Ion Mass Spectra of Some Phosphorus Organoelement Compounds

  • A. G. TerentyevEmail author
  • R. V. Khatymov
  • M. A. Lyogkov
  • A. V. Dudkin
  • I. V. Rybal’chenko
Articles
  • 26 Downloads

Abstract

Negative ion mass spectra for a series of organophosphorus compounds were obtained and negative ion fragmentation processes were treated theoretically. Using O-isopropyl and O-pinacolyl methylphosphonofluoridates as examples, electron affinities of molecules and their fragments were estimated using the UB3LYP/6-311+G(d,p) quantum-chemical approach and energetically more favorable and characteristic routes of dissociative electron attachment, including simple bond cleavage and rearrangements, were determined. Based on the obtained experimental and theoretical data, hypothetic fragmentation patterns were proposed and a special algorithm was compiled to predict negative ion mass spectra for some groups of organophosphorus compounds, such as О-alkyl methylphosphonofluoridates, О,О-alkyl phosphonodichloridates, and О,О′-dialkyl phosphonochloridates. The simulated mass spectra showed a good agreement with the experimental ones, confirming reasonable reliability of the proposed algorithm.

Keywords

phosphorus compounds negative ion mass spectra quantum-chemical calculations electron affinity dissociative electron attachment algorithm for the prediction of mass spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gray, N.A.B., Carhart, R.E., Lavanchy, A., et al., Anal. Chem., 1980, vol. 52, no. 7, p. 1095.CrossRefGoogle Scholar
  2. 2.
    Gasteiger, J., Hanebeck, W., and Schulz, K.P., J. Chem. Inf. Comput. Sci., 1992, vol. 32, no. 4, p. 264.CrossRefGoogle Scholar
  3. 3.
    Chen, H., Fan, B., Xia, H., et al., Eur. J. Mass Spectrom., 2003, vol. 9, no. 3, p. 175.CrossRefGoogle Scholar
  4. 4.
    Fan, B., Chen, H., Petitjean, M., et al., Spectrosc. Lett., 2005, vol. 38, no. 2, p. 145.CrossRefGoogle Scholar
  5. 5.
    Lebedev, A.T., Morozik, U.I., Myasoedov, B.F., et al., Mass-Spektrom., 2007, vol. 4, no. 4, p. 255.Google Scholar
  6. 6.
    Morozik, U.I. and Smirnov, A.O., Mass-Spektrom., 2008, vol. 5, no. 3, p. 211.Google Scholar
  7. 7.
    Morozik, U.I., Kuchinskii, E.V., Galyaev, G.V., et al., J. Anal. Chem., 2013, vol. 68, no. 8, p. 680.CrossRefGoogle Scholar
  8. 8.
    Hill, A.W. and Mortishire-Smith, R.J., Rapid Commun. Mass Spectrom., 2005, vol. 19, no. 11, p. 3111.CrossRefGoogle Scholar
  9. 9.
    Heinonen, M., Rantanen, A., Mielikäinen, T., et al., in Proc. German Conf. on Bioinformatics (GCB 2006), vol. P-83 of Lecture Notes in Informatics, p. 40.Google Scholar
  10. 10.
    Heinonen, M., Rantanen, A., Mielikäinen, T., et al., Rapid Commun. Mass Spectrom., 2008, vol. 22, no. 19, p. 3043.CrossRefGoogle Scholar
  11. 11.
    Böcker, S., Rasche, F., and Steijger, T., in Proc. Workshop on Algorithms in Bioinformatics (WABI 2009), vol. 5724 of Lecture Notes Comput Sci., Berlin: Springer, 2009, p. 13.CrossRefGoogle Scholar
  12. 12.
    Wolf, S., Schmidt, S., Müller-Hannemann, M., et al., BMC Bioinf., 2010, vol. 11, p. 148.CrossRefGoogle Scholar
  13. 13.
    Tautenhahn, R., Cho, K., Uritboonthai, W., et al., Nat. Biotechnol., 2012, vol. 30, no. 9, p. 826.CrossRefGoogle Scholar
  14. 14.
    Gerlich, M. and Neumann, S., J. Mass Spectrom., 2013, vol. 48, no. 3, p. 291.CrossRefGoogle Scholar
  15. 15.
    Khvostenko, V.I., Mass-spektrometriya otrizatel’nikh ionov v organicheskoi khimii (Negative Ion Mass Spectrometry in Organic Chemistry), Moscow: Nauka, 1981.Google Scholar
  16. 16.
    Khatymova, L.Z., Mazunov, V.A., and Khatymov, R.V., Hist. Sci. Eng., 2011, no. 3, p. 11.Google Scholar
  17. 17.
    Muftakhov, M.V., Khatymova, L.Z., Khatymov, R.V., et al., Izv. Ufimsk. Nauchn. Tsentra, Ross. Akad. Nauk, 2014, no. 4, p. 38.Google Scholar
  18. 18.
    Terentyev, A.G., Morozik, U.I., Rybal’chenko I.V., et al., Mass-Spektrom., 2015, vol. 12, no. 4, p. 259.Google Scholar
  19. 19.
    Khatymov, R.V., Ivanova, M.V., Terentyev, A.G., et al., Russ. J. Gen. Chem., 2015, vol. 85, no. 11, p. 2596.CrossRefGoogle Scholar
  20. 20.
    Mazunov, V.A., Shchukin, P.V., Khatymov, R.V., et al., Mass-Spektrom., 2006, vol. 3, no. 1, p. 11.Google Scholar
  21. 21.
    Khvostenko, V.I. and Rafikov, S.R., Dokl. Akad. Nauk SSSR, 1975, vol. 220, p. 892.Google Scholar
  22. 22.
    Christophorou, L.G., Adv. Electron. Electron Phys., 1978, vol. 46, p. 55.CrossRefGoogle Scholar
  23. 23.
    Khatymov, R.V., Muftakhov, M.V., Mazunov, V.A., et al., Russ. Chem. Bull., 2002, vol. 51, no. 2, p. 306.CrossRefGoogle Scholar
  24. 24.
    Khatymov, R.V., Muftakhov, M.V., Shchukin, P.V., et al., Russ. Chem. Bull., 2003, vol. 52, no. 9, p. 1974.CrossRefGoogle Scholar
  25. 25.
    Muftakhov, M.V., Shchukin, P.V., and Khatymov, R.V., Russ. Chem. Bull., 2006, vol. 55, no. 2, p. 380.CrossRefGoogle Scholar
  26. 26.
    Omarsson, B., Bjarnason, E.H., Haughey, S.A., et al., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 13, p. 4754.CrossRefGoogle Scholar
  27. 27.
    Khatymov, R.V., Tuktarov, R.F., and Muftakhov, M.V., JETP Lett., 2011, vol. 93, no. 8, p. 437.CrossRefGoogle Scholar
  28. 28.
    Khatymov, R.V., Muftakhov, M.V., and Mazunov, V.A., Rapid Commun. Mass Spectrom., 2003, vol. 17, no. 20, p. 2327.CrossRefGoogle Scholar
  29. 29.
    Granovsky, A.A., Firefly, Version 8. http://classic. chem.msu.su/gran/firefly/index.html.Google Scholar
  30. 30.
    Khursan, S.L., Kvantovaya mekhanika i kvantovaya khimiya (Quantum Mechanics and Quantum Chemistry), Ufa: Rayanov, 2005.Google Scholar
  31. 31.
    Simons, J., Annu. Rev. Phys. Chem., 2011, vol. 62, p. 107.CrossRefGoogle Scholar
  32. 32.
    Terentyev, A.G., Ivanova, M.V., Khatymov, R.V., et al., RF Patent 2599900, 2016.Google Scholar
  33. 33.
    Kirby, A.J. and Warren, S.G., The Organic Chemistry of Phosphorus, Amsterdam: Elsevier, 1967.Google Scholar
  34. 34.
    Terentyev, A.G., Dudkin, A.V., Morozik, U.I., et al., RF Patent 2616595, 2017.Google Scholar
  35. 35.
    Illenberger, E. and Smirnov, B.M., Phys.-Usp., 1998, no. 41, p. 731.CrossRefGoogle Scholar
  36. 36.
    Linstrom, P.J. and Mallard, W.G., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, MD. http://webbook.nist.gov. Cited May 12, 2016.Google Scholar
  37. 37.
    The R Project for Statistical Computing. http://www.rproject. org.Google Scholar
  38. 38.
    Shiny. http://shiny.rstudio.com.Google Scholar
  39. 39.
    Stein, S.E. and Scott, D.R., J. Am. Soc. Mass Spectrom., 1994, vol. 5, no. 5, p. 859.CrossRefGoogle Scholar
  40. 40.
    Revelsky, I.A., Gulyaev, I.V., Revelsky, A.I., et al., Mass-Spektrom., 2010, vol. 7, no. 2, p. 118.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. G. Terentyev
    • 1
    • 2
    Email author
  • R. V. Khatymov
    • 3
  • M. A. Lyogkov
    • 2
  • A. V. Dudkin
    • 1
    • 2
  • I. V. Rybal’chenko
    • 1
  1. 1.Kostroma State Technological UniversityKostromaRussia
  2. 2.Military Academy of Nuclear, Biological and Chemical DefenceKostromaRussia
  3. 3.Institute of Molecule and Crystal PhysicsUfa Scientific Center of the Russian Academy of SciencesUfaRussia

Personalised recommendations