Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 13, pp 1331–1339 | Cite as

Study of Gaseous Sample Ionization by Excited Particles Formed in Glow Discharge Using High-Resolution Orthogonal Acceleration Time-of-Flight Mass Spectrometer

  • I. V. Sulimenkov
  • V. S. Brusov
  • V. V. Zelenov
  • M. G. Skoblin
  • V. V. Filatov
  • A. R. Pikhtelev
  • V. I. KozlovskiiEmail author
Articles

Abstract

The experimental results of a mass spectral analysis of volatile organic compounds in a gaseous sample, obtained using an original design of an ion source based on the Penning ionization of a gas sample by excited metastable inert gas atoms, are presented. Using ANSYS software, a gas-dynamic simulation of reagent gas flow from discharge zone to ionization region was carried out to analyze the effect of gas flow profile on the transport of metastable atoms and ionization efficiency. The n-octane and toluene samples diluted with helium at 100 ppb mole concentrations were used for our experiments. The resulting mass spectra of n-octane and toluene samples containe far more intensive molecular ions in comparison to n-octane and toluene electron ionization mass spectra from the NIST database. The sensitivity of 5 ions per 1 pg and 130 ions per 1 pg was achieved for n-octane and toluene molecular ions using the developed ion source combined with our mass spectrometer. The corresponding detection limits are 2.3 pg s–1 for n-octane molecular ions and 0.08 pg s–1 for toluene molecular ions. The detection limit for the reported ion source was considered theoretically.

Keywords

time-of-flight mass spectrometry ion source glow discharge Penning ionization radio frequency quadrupole detection efficiency quantitative analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beynon, J.H., Mass Spectrometry and Its Application to Organic Chemistry, Amsterdam: Elsevier, 1960.Google Scholar
  2. 2.
    Amirav, A., Gordin, A., Poliak, M., et al., J. Mass Spectrom., 2008, vol. 43, no. 2, p. 141.CrossRefGoogle Scholar
  3. 3.
    Talroze, V.L. and Lyubimova, A.K., Dokl. Akad. Nauk SSSR, 1952, vol. 86, no. 4, p. 909.Google Scholar
  4. 4.
    Munson, M.S.B. and Field, F.H., J. Am. Chem. Soc., 1966, vol. 88, no. 12, p. 2621.CrossRefGoogle Scholar
  5. 5.
    Kebarle, P., J. Am. Soc. Mass Spectrom., 1992, vol. 3, no. 1, p. 1.CrossRefGoogle Scholar
  6. 6.
    Lipsky, S.R. and Shanin, M.M., Nature, 1963, vol. 197, no. 4867, p. 625.CrossRefGoogle Scholar
  7. 7.
    Anderson, D.R., Bierbaum, V.R., Depuy, C.H., et al., Int. J. Mass Spectrom. Ion Phys., 1983, vol. 52, no. 1, p. 65.CrossRefGoogle Scholar
  8. 8.
    McLuckey, S.A., Glish, G.L., Asano, K.G., et al., Anal. Chem., 1988, vol. 60, no. 20, p. 2220.CrossRefGoogle Scholar
  9. 9.
    Andrade, F.J., Shelley, J.T., Wetzel, W.C., et al., Anal. Chem., 2008, vol. 80, no. 8, p. 2646.CrossRefGoogle Scholar
  10. 10.
    Boutin, M., Lesage, J., Ostiguy, C., et al., J. Am. Soc. Mass Spectrom., 2004, vol. 15, no. 9, p. 1315.CrossRefGoogle Scholar
  11. 11.
    Ganeev, A.A., Gubal, A.R., Uskov, K.N., et al., Russ. Chem. Bull., 2012, vol. 61, no. 4, p. 752.CrossRefGoogle Scholar
  12. 12.
    Faubert, D., Paul, G.J.C., Giroux, J., et al., Int. J. Mass Spectrom. Ion Processes, 1993, vol. 124, no. 1, p. 69.CrossRefGoogle Scholar
  13. 13.
    Hiraoka, K., Fujimaki, S., Kambara, S., et al., Rapid Commun. Mass Spectrom., 2004, vol. 18, no. 19, p. 2323.CrossRefGoogle Scholar
  14. 14.
    Ganeev, A.A., Kuzmenkov, M.A., Potapov, S.V., et al., RF Patent 2251686, 2005.Google Scholar
  15. 15.
    Verenchikov, A. and Zamyatin, A., US Patent 9070541, 2012.Google Scholar
  16. 16.
    Verenchikov A.N. and Kolosov A.P., Mass-Spektrom., 2014, vol. 11, no. 4, p. 206.Google Scholar
  17. 17.
    Jordan, A., Haidacher, S., Hanel, G., et al., Int. J. Mass Spectrom. Ion Processes, 2009, vol. 286, no. 1, p. 32.CrossRefGoogle Scholar
  18. 18.
    Bogaerts, A., Guenard, R.D., Smith, B.W., et al., Spectrochim. Acta, Part A, 1997, vol. 52, no. 2, p. 219.CrossRefGoogle Scholar
  19. 19.
    Garcia, M.C., Rodero, A., Sola, A., et al., Spectrochim. Acta, Part A, 2000, vol. 55, no. 11, p. 1733.CrossRefGoogle Scholar
  20. 20.
    Kozlovskii, V.I., Sulimenkov, I.V., Brusov, V.S., et al., RF Patent 2529009, 2014.Google Scholar
  21. 21.
    Sulimenkov, I.V., Brusov, V.S., Pikhtelev, A.R., et al., in Proc. 5th Int. Conf.-School “Fundamental Issues of Mass Spectrometry and Its Analytical Application,” St. Petersburg, 2013, p. 64Google Scholar
  22. 22.
    Sulimenkov, I.V., Brusov, V.S., Pikhtelev, A.R., et al., in Mater. 5th Mezhdunar. Conf. “Mass-spektrometria i ee prikladnye problemy” (Proc. 5th Int. Conf. on Mass Spectrometry and Problems of Its Applications), Moscow, 2013, p. 119.Google Scholar
  23. 23.
    Sulimenkov, I.V., Brusov, V.S., in Mater. 6th Mezhdunar. Conf. “Mass-spektrometria i ee prikladnye problemy” (Proc. 6th Int. Conf. on Mass Spectrometry and Problems of Its Applications), Moscow, 2015, p. 113.Google Scholar
  24. 24.
    Dodonov, A.F., Kozlovski, V.I., Soulimenkov, I.V., et al., Eur. J. Mass Spectrom., 2000, vol. 6, no. 6, p. 481.CrossRefGoogle Scholar
  25. 25.
    Dodonov, A., Kozlovsky, V., Loboda, A., et al., Rapid Commun. Mass Spectrom., 1997, vol. 11, no. 15, p. 1649.CrossRefGoogle Scholar
  26. 26.
    Dodonov, A., Kozlovski, V., Sulimenkov, I., et al., Proc. 47th ASMS Conf. on Mass Spectrometry and Allied Topics, Dallas, TX, 1999.Google Scholar
  27. 27.
    Sulimenkov, I.V. and Kozlovskii, V.I., Pikhtelev, A.R., et al., Mass-Spektrom., 2005, vol. 2, no. 3, p. 217.Google Scholar
  28. 28.
    Lindinger, W., Phys. Rev. A: At., Mol., Opt. Phys., 1973, vol. 7, no. 1, p. 328.CrossRefGoogle Scholar
  29. 29.
    Carazzato, D. and Bertrand, M.J., J. Am. Soc. Mass Spectrom., 1994, vol. 5, no. 4, p. 305.CrossRefGoogle Scholar
  30. 30.
    Fizicheskie velichiny. Spravochnik (Physical Quantities: Reference Book), Grigorev, I.S. and Meilikhov, E.Z., Moscow: Energoatomizdat, 1991.Google Scholar
  31. 31.
    Hiraoka, K., Furuya, H., Kambara, S., et al., Rapid Commun. Mass Spectrom., 2006, vol. 20, no. 21, p. 3213.CrossRefGoogle Scholar
  32. 32.
    Smirnov, B.M., Phys.-Usp., 1981, vol. 24, no. 4, p. 251.Google Scholar
  33. 33.
    Smirnov, B.M., Iony i vozbuzhdennye atomy v plazme (Ions and Excited Atoms in a Plasma), Moscow: Atomizdat, 1974.Google Scholar
  34. 34.
    Frank-Kamenetskii, D.A., in Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987, p. 71.Google Scholar
  35. 35.
    Gershenzon, Yu.M., Grigorieva, V.M., Ivanov, A.V., et al., Faraday Discuss.,1995, vol. 100, p. 83.CrossRefGoogle Scholar
  36. 36.
    Smirnov, B.M., in Vozbuzhdennye atomy (Excited Atoms), Moscow: Energoizdat, 1982, p. 46.Google Scholar
  37. 37.
    Smirnov, B.M., in Vozbuzhdennye atomy (Excited Atoms), Moscow: Energoizdat, 1982, p. 33.Google Scholar
  38. 38.
    Smirnov, B.M., in Vozbuzhdennye atomy (Excited Atoms), Moscow: Energoizdat, 1982, p. 62.Google Scholar
  39. 39.
    Spanel, P. and Smith, D., Med. Biol. Eng. Comput., 1996, vol. 34, no. 6, p. 409.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. V. Sulimenkov
    • 1
  • V. S. Brusov
    • 1
  • V. V. Zelenov
    • 1
  • M. G. Skoblin
    • 1
  • V. V. Filatov
    • 1
  • A. R. Pikhtelev
    • 1
  • V. I. Kozlovskii
    • 1
    • 2
    Email author
  1. 1.Institute for Energy Problems of Chemical PhysicsChernogolovka, Moscow oblastRussia
  2. 2.Institute of Physiologically Active CompoundsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations