Journal of Analytical Chemistry

, Volume 72, Issue 13, pp 1340–1344 | Cite as

Elucidation of the Chemical Structure of a Gas Chromatographic Artifact of Synthetic Cannabinoid N-(1-Carbamoyl-2-Methylpropyl)-1-(Cyclohexylmethyl)-1H-Indazol-3Ccarboxamide by High-Resolution Mass Spectrometry

  • Vadim A. ShevyrinEmail author


Synthetic cannabinoids are the most popular psychoactive compounds on the illegal market. In the gas chromatographic determination, some synthetic cannabinoids undergo chemical transformations because of their thermal interaction with the chromatographic system. This paper is devoted to the elucidation of the structure of a gas chromatographic artifact formed from synthetic cannabinoid N-(1-carbamoyl-2-methylpropyl)-1-(cyclohexylmethyl)-1H-indazol-3-carboxamide as a result of dehydration of its terminal carbamoyl moiety. The chemical structure of the artifact is determined by high-resolution mass spectrometry.


psychoactive substances synthetic cannabinoids gas chromatography/mass spectrometry high-resolution mass spectrometry electron ionization mass spectra artifact thermal dehydration structure elucidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    United Nation Office on Drugs and Crime (UNODC), World Drug Report 2016, New York, United Nations, 2016. drug_report_2016_web.pdf.Google Scholar
  2. 2.
    Castaneto, M.S., Gorelick, D.A., Desrosiers, N.A., et al., Drug Alcohol Depend., 2014, vol. 144, p. 12.CrossRefGoogle Scholar
  3. 3.
    Shevyrin, V.A., Morzherin, Yu.Yu., Russ. Chem. Bull., 2015, vol. 64, no. 6, p. 1249.CrossRefGoogle Scholar
  4. 4.
    Shevyrin, V.A., Sinteticheskie kannabinoidy v kachestve novyhk psikhoaktivnykh soedinenii. Ustanovlenie structur, analiticheskie kharakteristiki, metody opredeleniya i identifikatsiya v ob”ektakh analiza narkoticheskikh sredstv (Synthetic cannabinoids as new psychoactive substances. Determination the structures, analytical char-acteristics, methods of detection and identification of objects in the analysis of drugs), Moscow: Pero, 2015, 608 p.Google Scholar
  5. 5.
    Uchiyama, N., Shimokawa, Y., Kawamura, M., et al., Forensic Toxicol., 2014, vol. 32, no. 2, p. 266.CrossRefGoogle Scholar
  6. 6.
    Buchler, I.P., Hayes, M.J., Hedge, S.G., et al., US Patent WO2009106980, 2009.Google Scholar
  7. 7.
    Shevyrin, V., Melkozerov, V., Nevero, A., et al., Forensic Sci. Int., 2013, vol. 226, nos. 1–3, p. 62.CrossRefGoogle Scholar
  8. 8.
    Tsujikawa, K., Yamamuro, T., Kuwayama, K., et al., Forensic Toxicol., 2014, vol. 32, no. 2, p. 201.CrossRefGoogle Scholar
  9. 9.
    AIPSIN AntiNarkotiki Information-Search System. Scholar
  10. 10.
    Bhattacharyya, N.K., Jha, S., Jha, S., et al., Int. J. Chem. Appl., 2012, vol. 4, no. 4, p. 295.Google Scholar
  11. 11.
    Geng, H. and Huang, P.-Q., Tetrahedron, 2015, vol. 71, no. 23, p. 3795.CrossRefGoogle Scholar
  12. 12.
    Bose, D.S. and Jayalakshmi, B., Synthesis, 1999, no. 1, p. 64.CrossRefGoogle Scholar
  13. 13.
    Bhalerao, D.S., Mahajan, U.S., Chaudhari, K.H., et al., Org. Chem., 2007, vol. 72, no. 2, p. 662.CrossRefGoogle Scholar
  14. 14.
    Sueoka, S., Mitsudome, T., Mizugaki, T., et al., Chem. Commun., 2010, vol. 46, no. 43, p. 8243.CrossRefGoogle Scholar
  15. 15.
    Fatiadi, A.J., in The Chemistry of Triple-Bonded Functional Groups, Patai, S. and Rappoport, Z., Eds., Wiley, 1983, Suppl. C, Part 1, p. 1057.Google Scholar
  16. 16.
    Shevyrin, V., Melkozerov, V., Nevero, A., et al., Anal. Bioanal. Chem., 2015, vol. 407, no. 21, p. 6301.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Chemistry and TechnologyUral Federal UniversityYekaterinburgRussia

Personalised recommendations