Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 13, pp 1345–1349 | Cite as

Possibilities for Energy Pumping in a Radio-Frequency Quadrupole by Shifted Supersonic Gas Jet. Part I: Accelerated and Excited Atom Transmission

  • V. V. RaznikovEmail author
  • V. V. Zelenov
  • E. V. Aparina
  • A. R. Pikhtelev
  • I. V. Sulimenkov
Articles
  • 12 Downloads

Abstract

Generation of an ion beam and its transmission into a mass analyzer is one of central problems in mass spectrometry. The use of a narrowly directed supersonic gas jet has a number of advantages in comparison with other sampling methods. The aim of this work was to confirm the declared earlier properties of the jet formed at the outlet of a cylindrical channel when the free path length of gaseous atoms at the beginning of the channel is comparable with the channel diameter. The paper describes the ability of such a supersonic jet to conserve an additional energy of jet gas atoms. A significant influence of the temperature of the gas flow on the yield of cyclohexane fragment ions was found, cyclohexane being an admixture in the noble gas jet passing through an electron ionization ion source. A possibility of obtaining a flow of metastable electronically excited atoms inside the jet is also shown. The results of the work confirm the availability of the supersonic gas jet for the design of a high efficiency ion source inside the radio-frequency quadrupole at the input of the mass analyzer.

Keywords

supersonic gas jet gas-heated radio-frequency quadrupole energy transport metastable excited atoms ion fragmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J., Andres, R., and Fenn, J., Molecular beams produced by supersonic nozzle, in Advances in Chemical Physics, vol. 10: Molecular Beams, Ross, J., Ed., New York: Interscience, 1966.Google Scholar
  2. 2.
    Campargue, R., J. Phys. Chem., 1984, vol. 88, no. 20, p. 4466.CrossRefGoogle Scholar
  3. 3.
    Amirav, A. and Danon, A., US Patent 5055677 (1991).Google Scholar
  4. 4.
    Amirav, A., US Patent 7518103 (2009).Google Scholar
  5. 5.
    Amirav, A., Gordin, A., Poliak, M., and Fialkov, A.B., J. Mass Spectrom., 2008, vol. 43, no. 2, p. 141.CrossRefGoogle Scholar
  6. 6.
    Bazenov, A.N., Bulovich, S.V., Gall, L.N., et al., Mass- Spektrom., 2011, vol. 8, no. 1, p. 27.Google Scholar
  7. 7.
    Fomina, N.S., Kretinina, A.V., Masyukevich, S.V., et al., Mass-Spektrom., 2012, vol. 9, no. 4, p. 261.Google Scholar
  8. 8.
    Raznikov, V.V., Ivashin, S.V., Zelenov, V.V., et al., Izv. Ross. Akad. Nauk, Energ., 2007, no. 5, p. 140.Google Scholar
  9. 9.
    Raznikov, V.V., Zelenov, V.V., Aparina, E.V., et al., Izv. Ross. Akad. Nauk, Energ., 2012, no. 3, p. 3.Google Scholar
  10. 10.
    Raznikov, V.V. and Zelenov, V.V., Int. J. Mass Spectrom. Ion Processes, 2012, vols. 325–327, p. 86.CrossRefGoogle Scholar
  11. 11.
    Dodonov, A.F., Chernushevich, I.V., Dodonova, T.F., Raznikov, V.V., and Talroze, V.L., USSR Inventor’s Certificate no. 1681340, Byull. Izobret., 1991, no. 36.Google Scholar
  12. 12.
    Dodonov, A., Loboda, A., Kozlovski, V., et al., Eur. J. Mass Spectrom., 2000, vol. 6, no. 6, p. 481.CrossRefGoogle Scholar
  13. 13.
    Soulimenkov, I.V., Kozlovski, V.I., Pikhtelev, A.R., et al., Mass-Spektrom., 2005, vol. 2, no. 3, p. 217.Google Scholar
  14. 14.
    Soulimenkov, I.V., Kozlovski, V.I., Makhaev, V.D., et al., Mass-Spektrom., 2007, vol. 4, no. 1, p. 37.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Raznikov
    • 1
    Email author
  • V. V. Zelenov
    • 1
  • E. V. Aparina
    • 1
  • A. R. Pikhtelev
    • 1
  • I. V. Sulimenkov
    • 1
  1. 1.Branch of Talrose Institute for Energy Problems of Chemical PhysicsRussian Academy of Sciences RussiaChernogolovka, Moscow oblastRussia

Personalised recommendations