Identification of Regions in Apomyoglobin that Form Intermolecular Interactions in Amyloid Aggregates Using High-Performance Mass Spectrometry

Abstract

The formation of amyloid aggregates in human organs and tissues causes the development of incurable diseases. However, experimental studies of the mechanism of amyloid formation by proteins and the structural characteristics of amyloids are complicated because of the heterogeneity and high molecular weight of the aggregates. We used limited proteolysis and mass spectrometry for the identification of regions in the apomyoglobin polypeptide chain, which give rise to intermolecular interactions in amyloid structures. Tandem mass spectroscopy enabled the identification of regions in the myoglobin polypeptide chain, which form the core of amyloid structures. It was shown that the main structural elements for the formation of the core of amyloid fibrils in myoglobin were regions from 60 through 90 and from 97 through 124 amino acid residues. These regions coincide well with those theoretically predicted. This approach yielded important data on the structure of protein molecules in aggregates and on conformational rearrangements of apomyoglobin upon amyloid formation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Chiti, F. and Dobson, C.M., Annu. Rev. Biochem., 2006, vol. 75, p. 333.

    CAS  Article  Google Scholar 

  2. 2.

    Fandrich, M. and Dobson, C.M., EMBO J., 2002, vol. 21, no. 21, p. 5682.

    Article  Google Scholar 

  3. 3.

    Makin, O.S. and Serpell, L.C., FEBS J., 2005, vol. 272, no. 23, p. 5950.

    CAS  Article  Google Scholar 

  4. 4.

    Chiti, F. and Dobson, C.M., Nat. Chem. Biol., 2009, vol. 5, no. 1, p. 15.

    CAS  Article  Google Scholar 

  5. 5.

    Debelouchina, G.T., Platt, G.W., Bayro, M.J., et al., J. Am. Chem. Soc., 2010, vol. 132, no. 30, p. 10414.

    CAS  Article  Google Scholar 

  6. 6.

    Chiti, F., Taddei, N., Baroni, F., et al., Nat. Struct. Biol., 2002, vol. 9, no. 2, p. 137.

    CAS  Article  Google Scholar 

  7. 7.

    Wurth, C., Guimard, N.K., and Hercht, M.H., J. Mol. Biol., 2002, vol. 319, no. 5, p. 1279.

    CAS  Article  Google Scholar 

  8. 8.

    Fernandez-Escamilla, A.M., Rousseau, F., Schymkowitz, J., et al., Nat. Biotechnol., 2004, vol. 22, no. 10, p. 1302.

    CAS  Article  Google Scholar 

  9. 9.

    Garbuzynskiy, S.O., Lobanov, M.Y., and Galzitskaya, O.V., Bioinformatics, 2010, vol. 26, no. 3, p. 326.

    CAS  Article  Google Scholar 

  10. 10.

    Emily, M., Talvas, A., and Delamarche, C., PLoS One, 2013, vol. 8, no. 11, e79722.

    Article  Google Scholar 

  11. 11.

    Eliezer, D., Yao, J., Dyson, H.J., et al., Nat. Struct. Biol., 1998, vol. 5, no. 2, p. 148.

    CAS  Article  Google Scholar 

  12. 12.

    Gast, K., Damaschun, H., Misselwitz, R., et al., Eur. Biophys. J., 1994, vol. 23, no. 4, p. 297.

    CAS  Article  Google Scholar 

  13. 13.

    Ptitsyn, O.B., Adv. Protein Chem., 1995, vol. 47, p. 83.

    CAS  Article  Google Scholar 

  14. 14.

    Eliezer, D., Chung, J., Dyson, H.J., et al., Biochemistry, 2000, vol. 39, no. 11, p. 2894.

    CAS  Article  Google Scholar 

  15. 15.

    Fandrich, M., Forge, V., Buder, K., et al., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 26, p. 15463.

    Article  Google Scholar 

  16. 16.

    Sirangelo, I., Malmo, C., Iannuzzi, C., et al., J. Biol. Chem., 2004, vol. 279, no. 13, p. 13183.

    CAS  Article  Google Scholar 

  17. 17.

    Infusini, G., Iannuzzi, C., Vilasi, S., et al., Eur. Biophys. J., 2012, vol. 41, no. 7, p. 615.

    CAS  Article  Google Scholar 

  18. 18.

    Katina, N.S., Ilyina, N.B., Kashparov, I.A., et al., Biochemistry (Moscow), 2011, vol. 76, no. 5, p. 555.

    CAS  Article  Google Scholar 

  19. 19.

    Samatova, E.N., Katina, N.S., Balobanov, V.A., et al., Protein Sci., 2009, vol. 18, no. 10, p. 2152.

    CAS  Article  Google Scholar 

  20. 20.

    Tycko, R., Annu. Rev. Phys. Chem., 2011, vol. 62, p. 279.

    CAS  Article  Google Scholar 

  21. 21.

    Tsiolaki, P.L., Louros, N.N., Hamodrakas, S.J., et al., J. Struct. Biol., 2015, vol. 191, no. 3, p. 272.

    CAS  Article  Google Scholar 

  22. 22.

    De Laureto, P., Taddei, N., Frare, E., et al., J. Mol. Biol., 2003, vol. 344, no. 1, p. 129.

    Article  Google Scholar 

  23. 23.

    Myers, S.L., Thomson, N.H., Radford, S.E., et al., Rapid Commun. Mass Spectrom., 2006, vol. 20, no. 11, p. 1628.

    CAS  Article  Google Scholar 

  24. 24.

    Davis, P.J., Holmes, D., Waltho, J.P., et al., J. Mol. Biol., 2015, vol. 427, no. 15, p. 2418.

    CAS  Article  Google Scholar 

  25. 25.

    Monti, M., Amoresano, A., Giorgetti, S., et al., Biochim. Biophys. Acta, 2005, vol. 1753, no. 1, p. 44.

    CAS  Article  Google Scholar 

  26. 26.

    DNA Cloning: A Practical Approach, Glover, D.M., Ed., Oxford: IRL, 1985.

  27. 27.

    Gill, S.C. and von Hippel, P.H., Anal. Biochem., 1998, vol. 182, no. 2, p. 319.

    Article  Google Scholar 

  28. 28.

    Schagger, H., Nat. Protoc., 2006, vol. 1, no. 1, p. 16.

    Article  Google Scholar 

  29. 29.

    Zandomeneqhi, G., Krebs, M.R., and McCammon, M.G., et al., Protein Sci., 2004, vol. 13, no. 12, p. 3314.

    Article  Google Scholar 

  30. 30.

    Kong, J. and Yu, S., Acta Biochim. Biophys. Sin. (Shanqhai), 2007, vol. 39, no. 8, p. 549.

    CAS  Article  Google Scholar 

  31. 31.

    Fontana, A., de Lauretto, P.P., Spolaore, B., et al., Acta Biochim. Pol., 2004, vol. 51, no. 2, p. 299.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Surin.

Additional information

Original Russian Text © N.S. Katina, M.Yu. Suvorina, E.I. Grigorashvili, V.V. Marchenkov, N.A. Ryabova, A.D. Nikulin, A.K. Surin, 2016, published in Mass-spektrometriya, 2016, Vol. 13, No. 4, pp. 225–234.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katina, N.S., Suvorina, M.Y., Grigorashvili, E.I. et al. Identification of Regions in Apomyoglobin that Form Intermolecular Interactions in Amyloid Aggregates Using High-Performance Mass Spectrometry. J Anal Chem 72, 1271–1279 (2017). https://doi.org/10.1134/S1061934817130056

Download citation

Keywords

  • amyloids
  • apomyoglobin
  • limited proteolysis
  • amyloidogenic region
  • HPLC–MS/MS
  • identification of peptides