Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 13, pp 1271–1279 | Cite as

Identification of Regions in Apomyoglobin that Form Intermolecular Interactions in Amyloid Aggregates Using High-Performance Mass Spectrometry

  • N. S. Katina
  • M. Yu. Suvorina
  • E. I. Grigorashvili
  • V. V. Marchenkov
  • N. A. Ryabova
  • A. D. Nikulin
  • A. K. Surin
Articles

Abstract

The formation of amyloid aggregates in human organs and tissues causes the development of incurable diseases. However, experimental studies of the mechanism of amyloid formation by proteins and the structural characteristics of amyloids are complicated because of the heterogeneity and high molecular weight of the aggregates. We used limited proteolysis and mass spectrometry for the identification of regions in the apomyoglobin polypeptide chain, which give rise to intermolecular interactions in amyloid structures. Tandem mass spectroscopy enabled the identification of regions in the myoglobin polypeptide chain, which form the core of amyloid structures. It was shown that the main structural elements for the formation of the core of amyloid fibrils in myoglobin were regions from 60 through 90 and from 97 through 124 amino acid residues. These regions coincide well with those theoretically predicted. This approach yielded important data on the structure of protein molecules in aggregates and on conformational rearrangements of apomyoglobin upon amyloid formation.

Keywords

amyloids apomyoglobin limited proteolysis amyloidogenic region HPLC–MS/MS identification of peptides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chiti, F. and Dobson, C.M., Annu. Rev. Biochem., 2006, vol. 75, p. 333.CrossRefGoogle Scholar
  2. 2.
    Fandrich, M. and Dobson, C.M., EMBO J., 2002, vol. 21, no. 21, p. 5682.CrossRefGoogle Scholar
  3. 3.
    Makin, O.S. and Serpell, L.C., FEBS J., 2005, vol. 272, no. 23, p. 5950.CrossRefGoogle Scholar
  4. 4.
    Chiti, F. and Dobson, C.M., Nat. Chem. Biol., 2009, vol. 5, no. 1, p. 15.CrossRefGoogle Scholar
  5. 5.
    Debelouchina, G.T., Platt, G.W., Bayro, M.J., et al., J. Am. Chem. Soc., 2010, vol. 132, no. 30, p. 10414.CrossRefGoogle Scholar
  6. 6.
    Chiti, F., Taddei, N., Baroni, F., et al., Nat. Struct. Biol., 2002, vol. 9, no. 2, p. 137.CrossRefGoogle Scholar
  7. 7.
    Wurth, C., Guimard, N.K., and Hercht, M.H., J. Mol. Biol., 2002, vol. 319, no. 5, p. 1279.CrossRefGoogle Scholar
  8. 8.
    Fernandez-Escamilla, A.M., Rousseau, F., Schymkowitz, J., et al., Nat. Biotechnol., 2004, vol. 22, no. 10, p. 1302.CrossRefGoogle Scholar
  9. 9.
    Garbuzynskiy, S.O., Lobanov, M.Y., and Galzitskaya, O.V., Bioinformatics, 2010, vol. 26, no. 3, p. 326.CrossRefGoogle Scholar
  10. 10.
    Emily, M., Talvas, A., and Delamarche, C., PLoS One, 2013, vol. 8, no. 11, e79722.CrossRefGoogle Scholar
  11. 11.
    Eliezer, D., Yao, J., Dyson, H.J., et al., Nat. Struct. Biol., 1998, vol. 5, no. 2, p. 148.CrossRefGoogle Scholar
  12. 12.
    Gast, K., Damaschun, H., Misselwitz, R., et al., Eur. Biophys. J., 1994, vol. 23, no. 4, p. 297.CrossRefGoogle Scholar
  13. 13.
    Ptitsyn, O.B., Adv. Protein Chem., 1995, vol. 47, p. 83.CrossRefGoogle Scholar
  14. 14.
    Eliezer, D., Chung, J., Dyson, H.J., et al., Biochemistry, 2000, vol. 39, no. 11, p. 2894.CrossRefGoogle Scholar
  15. 15.
    Fandrich, M., Forge, V., Buder, K., et al., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 26, p. 15463.CrossRefGoogle Scholar
  16. 16.
    Sirangelo, I., Malmo, C., Iannuzzi, C., et al., J. Biol. Chem., 2004, vol. 279, no. 13, p. 13183.CrossRefGoogle Scholar
  17. 17.
    Infusini, G., Iannuzzi, C., Vilasi, S., et al., Eur. Biophys. J., 2012, vol. 41, no. 7, p. 615.CrossRefGoogle Scholar
  18. 18.
    Katina, N.S., Ilyina, N.B., Kashparov, I.A., et al., Biochemistry (Moscow), 2011, vol. 76, no. 5, p. 555.CrossRefGoogle Scholar
  19. 19.
    Samatova, E.N., Katina, N.S., Balobanov, V.A., et al., Protein Sci., 2009, vol. 18, no. 10, p. 2152.CrossRefGoogle Scholar
  20. 20.
    Tycko, R., Annu. Rev. Phys. Chem., 2011, vol. 62, p. 279.CrossRefGoogle Scholar
  21. 21.
    Tsiolaki, P.L., Louros, N.N., Hamodrakas, S.J., et al., J. Struct. Biol., 2015, vol. 191, no. 3, p. 272.CrossRefGoogle Scholar
  22. 22.
    De Laureto, P., Taddei, N., Frare, E., et al., J. Mol. Biol., 2003, vol. 344, no. 1, p. 129.CrossRefGoogle Scholar
  23. 23.
    Myers, S.L., Thomson, N.H., Radford, S.E., et al., Rapid Commun. Mass Spectrom., 2006, vol. 20, no. 11, p. 1628.CrossRefGoogle Scholar
  24. 24.
    Davis, P.J., Holmes, D., Waltho, J.P., et al., J. Mol. Biol., 2015, vol. 427, no. 15, p. 2418.CrossRefGoogle Scholar
  25. 25.
    Monti, M., Amoresano, A., Giorgetti, S., et al., Biochim. Biophys. Acta, 2005, vol. 1753, no. 1, p. 44.CrossRefGoogle Scholar
  26. 26.
    DNA Cloning: A Practical Approach, Glover, D.M., Ed., Oxford: IRL, 1985.Google Scholar
  27. 27.
    Gill, S.C. and von Hippel, P.H., Anal. Biochem., 1998, vol. 182, no. 2, p. 319.CrossRefGoogle Scholar
  28. 28.
    Schagger, H., Nat. Protoc., 2006, vol. 1, no. 1, p. 16.CrossRefGoogle Scholar
  29. 29.
    Zandomeneqhi, G., Krebs, M.R., and McCammon, M.G., et al., Protein Sci., 2004, vol. 13, no. 12, p. 3314.CrossRefGoogle Scholar
  30. 30.
    Kong, J. and Yu, S., Acta Biochim. Biophys. Sin. (Shanqhai), 2007, vol. 39, no. 8, p. 549.CrossRefGoogle Scholar
  31. 31.
    Fontana, A., de Lauretto, P.P., Spolaore, B., et al., Acta Biochim. Pol., 2004, vol. 51, no. 2, p. 299.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. S. Katina
    • 1
  • M. Yu. Suvorina
    • 1
  • E. I. Grigorashvili
    • 1
  • V. V. Marchenkov
    • 1
  • N. A. Ryabova
    • 1
  • A. D. Nikulin
    • 1
  • A. K. Surin
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations