Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 13, pp 1289–1294 | Cite as

Mass Spectrometric Detection of Charged Silver Nanoclusters with Hydrogen Inclusions Formed by the Reduction of AgNO3 in Ethylene Glycol

  • O. A. Boryak
  • M. V. KosevichEmail author
  • V. V. Chagovets
  • V. S. Shelkovsky
Articles
  • 27 Downloads

Abstract

In the problem of the production silver nanoparticles, mass spectrometry allows one to identify nanoclusters as nuclei or intermediates in the synthesis of nanoparticles and to understand the mechanisms of their formation. Using low-temperature secondary emission mass spectrometry, we determined the cluster composition of a system formed in the microwave treatment of a solution of AgNO3 in ethylene glycol (M). Along with silver ion–ethylene glycol associates М m ⋅ Ag+ (m = 1–5) and small silver clusters AgM n + (n = 1–9), unusual silver clusters with one hydrogen atom [Ag n H]+ (n = 2, 4) were observed. Possible pathways for the formation of silver nanoparticles taking into account hydrogen-containing cluster intermediates are discussed.

Keywords

low-temperature secondary emission mass spectrometry silver nanoclusters ethylene glycol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krutyakov, Yu.A., Kudrinskiy, A.A., Olenin, A.Yu., et al., Russ. Chem. Rev., 2008, vol. 77, no. 3, p. 233.CrossRefGoogle Scholar
  2. 2.
    Silver Nanoparticles, Perez, D.P., Ed., Vukovar: InTech, 2010.Google Scholar
  3. 3.
    Natsuki, J., Natsuki, T., and Hashimoto, Y., Int. J. Mater. Sci. Appl., 2015, vol. 4, no. 5, p. 325.Google Scholar
  4. 4.
    Iravani, S., Korbekandi, H., Mirmohammadi, S.V., et al., Res. Pharm. Sci., 2014, vol. 9, no. 6, p. 385.Google Scholar
  5. 5.
    El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., et al., Arabian J. Chem., 2010, vol. 3, no. 3, p. 135.CrossRefGoogle Scholar
  6. 6.
    Ershov, B.G., Ross. Khim. Zh., 2001, vol. 45, no. 3, p. 20.Google Scholar
  7. 7.
    Olenin, A.Yu. and Lisichkin, G.V., Russ. Chem. Rev., 2011, vol. 80, no. 7, p. 605.CrossRefGoogle Scholar
  8. 8.
    Wiley, B., Sun, Y., and Xia, Y., Acc. Chem. Res., 2007, vol. 40, no. 10, p. 1067.CrossRefGoogle Scholar
  9. 9.
    Lu, Y. and Chen, W., Anal. Chem., 2015, vol. 87, no. 21, p. 10659.CrossRefGoogle Scholar
  10. 10.
    Katakuse, I., Ichihara, T., Matsuo, T., et al., Int. J. Mass Spectrom. Ion Processes, 1989, vol. 91, no. 1, p. 99.CrossRefGoogle Scholar
  11. 11.
    Kosevich, M.V., Chagovets, V.V., Severinovskaya, O.V., et al., J. Anal. Chem., 2012, vol. 67, no. 13, p. 987.CrossRefGoogle Scholar
  12. 12.
    Boryak, O.A., Kosevich, M.V., Chagovets, V.V., et al., J. Anal. Chem., 2012, vol. 67, no. 13, p. 994.CrossRefGoogle Scholar
  13. 13.
    Kéki, S., Szilágyi, L.S., Török, J., et al., Phys. Chem. B, 2003, vol. 107, no. 20, p. 4818.CrossRefGoogle Scholar
  14. 14.
    Sharpe, P. and Cassady, C.J., Chem. Phys. Lett., 1992, vol. 191, nos. 1–2, p. 111.CrossRefGoogle Scholar
  15. 15.
    Wucher, A., Wahl, M., and Oechsner, H., Nucl. Instrum. Methods Phys. Res., Sect. B, 1993, vol. 83, nos. 1–2, p. 73.CrossRefGoogle Scholar
  16. 16.
    Rashidzadeh, H. and Guo, B., Chem. Phys. Lett., 1999, vol. 310, nos. 5–6, p. 466.CrossRefGoogle Scholar
  17. 17.
    Mafune, F., Kohno, J., Takeda, Y., et al., J. Phys. Chem. B, 2000, vol. 104, no. 39, p. 9111.CrossRefGoogle Scholar
  18. 18.
    Dolgaev, S.I., Simakin, A.V., Voronov, V.V., et al., Appl. Surf. Sci., 2002, vol. 186, nos. 1–4, p. 546.CrossRefGoogle Scholar
  19. 19.
    Tabarin, T., Antoine, R., Broyer, M., et al., Eur. Phys. J. D, 2006, vol. 37, no. 2, p. 237.CrossRefGoogle Scholar
  20. 20.
    Wleklinski, M., Sarkar, D., Hollerbach, A., et al., Phys. Chem. Chem. Phys., 2015, vol. 17, no. 28, p. 18364.CrossRefGoogle Scholar
  21. 21.
    Khairallah, G.N. and O’Hair, R.A.J., Dalton Trans., 2005, no. 16, p. 2702.CrossRefGoogle Scholar
  22. 22.
    Khairallah, G.N. and O’Hair, R.A.J., Dalton Trans., 2008, no. 22, p. 2956.CrossRefGoogle Scholar
  23. 23.
    Clark, A.J., Zavras, A., Khairallah, G.N., et al., Int. J. Mass Spectrom. Ion Processes, 2015, vol. 378, p. 86.CrossRefGoogle Scholar
  24. 24.
    Zavras, A., Ariafard, A., Khairallah, G.N., et al., Nanoscale, 2015, vol. 7, no. 43, p. 18129.CrossRefGoogle Scholar
  25. 25.
    Zavras, A., Khairallah, G.N., Connell, T.U., et al., Inorg. Chem., 2014, vol. 53, no. 14, p. 7429.CrossRefGoogle Scholar
  26. 26.
    Olenin, A.Yu., Krutyakov, Yu.A., and Lisichkin, G.V., Nanotechnol. Russ., 2010, vol. 5, no. 5, p. 421.CrossRefGoogle Scholar
  27. 27.
    Jacob, J.A., Kapoor, S., Biswas, N., et al., Colloids Surf., A, 2007, vol. 301, nos. 1–3, p. 329.CrossRefGoogle Scholar
  28. 28.
    Soroushian, B., Lampre, I., Belloni, J., et al., Radiat. Phys. Chem., 2005, vol. 72, nos. 2–3, p. 111.CrossRefGoogle Scholar
  29. 29.
    Tsuji, M., Nishizawa, Y., Matsumoto, K., et al., Colloids Surf., A, 2007, vol. 293, nos. 1–3, p. 185.CrossRefGoogle Scholar
  30. 30.
    Li, J., Zhua, J., Liu, X., et al., Dalton Trans., 2014, vol. 43, p. 132.CrossRefGoogle Scholar
  31. 31.
    Chagovets, V.V., Kosevich, M.V., Orlov, V.V., et al., Abstracts of Papers, Conf. Modern Problems of Surface Chemistry and Physics, Kiyv, 2011, p. 302.Google Scholar
  32. 32.
    Sergeev, B.M., Kiryukhin, M.V., Bakhov, F.N., et al., Vestn. Mosk. Univ., Ser. 2: Khim., 2001, vol. 42, p. 308.Google Scholar
  33. 33.
    Kosevich, M.V., Zobnina, V.G., Boryak, O.A., et al., Mass-Spektrom., 2006, vol. 3, no. 1, p. 33.Google Scholar
  34. 34.
    Kosevich, M.V., Shelkovsky, V.S., Boryak, O.A., et al., Rapid Commun. Mass Spectrom., 2003, vol. 17, no. 15, p. 1781.CrossRefGoogle Scholar
  35. 35.
    Kosevich, M.V., Eur. J. Mass Spectrom., 1998, vol. 4, no. 4, p. 251.CrossRefGoogle Scholar
  36. 36.
    Kosevich, M.V., Eur. J. Mass Spectrom., 1997, vol. 3, no. 4, p. 320.CrossRefGoogle Scholar
  37. 37.
    Kosevich, M.V., Czira, G., Boryak, O.A., et al., J. Mass Spectrom., 1998, vol. 33, no. 9, p. 843.CrossRefGoogle Scholar
  38. 38.
    Chagovets, V.V., Kosevich, M.V., Stepanian, S.G., et al., Visn. V.N. Karazin Kharkiv Natl. Univ., Biophys. Bull., 2004, vol. 637, nos. 1–2, p. 56.Google Scholar
  39. 39.
    Katakuse, I., Ichihara, T., Fujita, Y., et al., Int. J. Mass Spectrom. Ion Processes, 1985, vol. 67, no. 2, p. 229.CrossRefGoogle Scholar
  40. 40.
    Ershov, B.G., Janata, E., and Henglein, A., J. Phys. Chem., 1993, vol. 97, no. 2, p. 339.CrossRefGoogle Scholar
  41. 41.
    Ershov, B.G., Ionova, G.V., and Kiseleva, A.A., Zh. Fiz. Khim., 1995, vol. 69, no. 2, p. 260.Google Scholar
  42. 42.
    Desireddy, A., Kumar, S., Guo, J., et al., Nanoscale, 2013, vol. 5, no. 5, p. 2036.CrossRefGoogle Scholar
  43. 43.
    Lins, J.O.M.A. and Nascimento, M.A.C., Chem. Phys. Lett., 2004, vol. 391, nos. 1–3, p. 9.CrossRefGoogle Scholar
  44. 44.
    Zhao, S., Liu, Z.-P., Li, Z.-H., et al., J. Phys. Chem. A, 2006, vol. 110, no. 40, p. 11537.CrossRefGoogle Scholar
  45. 45.
    Zhao, S., Ren, Y.L., Ren, Y.L., et al., J. Phys. Chem. A, 2010, vol. 114, no. 14, p. 4917.CrossRefGoogle Scholar
  46. 46.
    Janata, E., Henglein, A., and Ershov, B.G., J. Phys. Chem., 1994, vol. 98, no. 42, p. 10888.CrossRefGoogle Scholar
  47. 47.
    Pomogajlo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.Google Scholar
  48. 48.
    Polte, J., CrystEngComm, 2015, vol. 17, no. 36, p. 6809.CrossRefGoogle Scholar
  49. 49.
    Ibraeva, Zh., Kudaybergenov, S., and Bekturov, E., Stabilizatsiya nanochastits metallov gidrofil’nymi polimerami (Stabilization of Metal Nanoparticles by Hydrophilic Polymers), Saarbrucken: LAP LAMBERT Academic, 2013.Google Scholar
  50. 50.
    Schmidbaur, H. and Schier, A., Angew. Chem., Int. Ed., 2015, vol. 54, no. 3, p. 746.CrossRefGoogle Scholar
  51. 51.
    Koskinen, L., Jääskeläinen, S., Oresmaa, L., et al., CrystEngComm, 2012, vol. 14, no. 10, p. 3509.CrossRefGoogle Scholar
  52. 52.
    Liddle, B.J., Hall, D., Lindeman, S.V., et al., Inorg. Chem., 2009, vol. 48, no. 17, p. 8404.CrossRefGoogle Scholar
  53. 53.
    Jung, O.-S., Kim, Y.J., Lee, Y.A., et al., Cryst. Growth Des., 2004, vol. 4, no. 1, p. 23.CrossRefGoogle Scholar
  54. 54.
    Tate, B.K., Wyss, C.M., Bacsa, J., et al., Chem. Sci., 2013, vol. 4, no. 8, p. 306.CrossRefGoogle Scholar
  55. 55.
    Zavras, A., Khairallah, G.N., Connell, T.U., et al., Angew. Chem., Int. Ed., 2013, vol. 52, no. 32, p. 8391.CrossRefGoogle Scholar
  56. 56.
    Daly, S., Krstić, M., Giuliani, A., et al., Phys. Chem. Chem. Phys., 2015, vol. 17, no. 39, p. 25772.CrossRefGoogle Scholar
  57. 57.
    Girod, M., Krstić, M., Antoine, R., et al., Chem. Eur. J., 2014, vol. 20, no. 50, p. 16626.CrossRefGoogle Scholar
  58. 58.
    Wang, F.Q., Khairallah, G.N., Koutsantonis, G.A., et al., Phys. Chem. Chem. Phys., 2009, vol. 11, no. 21, p. 4132.CrossRefGoogle Scholar
  59. 59.
    Balcerzyk, A., Schmidhammer, U., Horne, G., et al., J Phys. Chem. B, 2015, vol. 119, no. 31, p. 10096.CrossRefGoogle Scholar
  60. 60.
    Malyshev, V.M. and Rumyantsev, D.V., Serebro (Silver), Moscow: Metallurgia, 1987.Google Scholar
  61. 61.
    Antonova, M.M. and Morozova, R.A., Preparativnaya khimiya gidratov (Preparative Chemistry of Hydrates), Kiev: Naukova Dumka, 1976.Google Scholar
  62. 62.
    National Institute of Standards and Technology (NIST) Website. http://webbook.nist.gov/cgi/cbook. cgi?ID=C13967016&Units=SI&Mask=20#Ion-Energetics/. Cited May 12, 2016.Google Scholar
  63. 63.
    Lias, S.G., Bartmess, J.E., Liebman, J.F., et al., J. Phys. Chem. Ref. Data, 1988, vol. 17, no. 1, p. 1.CrossRefGoogle Scholar
  64. 64.
    Chen, Y.-M. and Armentrout, P.B., J. Phys. Chem., 1995, vol. 99, no. 29, p. 11424.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. A. Boryak
    • 1
  • M. V. Kosevich
    • 1
    Email author
  • V. V. Chagovets
    • 1
    • 2
  • V. S. Shelkovsky
    • 1
  1. 1.Verkin Institute for Low Temperature Physics and EngineeringNational Academy of Sciences of UkraineKharkovUkraine
  2. 2.Research Center for Obstetrics, Gynecology and PerinatologyMinistry of Healthcare of the Russian FederationMoscowRussia

Personalised recommendations