Journal of Analytical Chemistry

, Volume 72, Issue 5, pp 510–519 | Cite as

Using additional standards for increasing the accuracy of quantitative chromatographic analysis

Articles
  • 75 Downloads

Abstract

Uncontrolled partial losses at the step of sample injection into a gas chromatographic column increase errors of determination by the external standard, absolute calibration, and standard addition methods. Modified method is proposed for quantitative analysis; it includes the introduction of additional standards into test samples and calculations by the ratio between the areas of chromatographic peaks and peaks of standards rather than the absolute areas of chromatographic peaks. The calculation equations are presented for modified methods of quantitative analysis using additional standards, including those for estimating random errors of determination. The relative standard deviations of peak areas were shown to be 6–38-fold lower than the analogous statistical characteristics of absolute areas. This ensures a high accuracy of quantitative determinations even under the conditions of low reproducibility of sample dosing. Solvents contained in the analyzed samples can be used as additional standards. This version can be recommended as a routine method of data representation and processing.

Keywords

chromatography quantitative analysis external standard method standard addition absolute calibration method dosing error additional standards increase of accuracy solvent as an additional standard 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novak, I., Quantitative Analysis by Gas Chromatography, New York Marcel Dekker, 1975.Google Scholar
  2. 2.
    Handbuch der Gaschromatographie, Leibnitz, E. and Struppe, H.G., Eds., Leipzig: Akademische Verlagsgesellschaft Geest & Portig K.-G., vol. 1, 1984, 3rd ed.Google Scholar
  3. 3.
    Sparkman, O.D., Penton, Z., and Kitson, F., Gas Chromatography and Mass Spectrometry, New York Academic, 2011.Google Scholar
  4. 4.
    Zenkevich, I.G. and Klimova, I.O., J. Anal. Chem., 2006, vol. 61, no. 10, p. 967.CrossRefGoogle Scholar
  5. 5.
    Marinichev, A.N., Turbovich, M.L., and Zenkevich, I.G., Fiziko-khimicheskie raschety na mikro-EVM. Spravochnik (Physicochemical Calculations by Microcomputer: Handbook), Leningrad Khimiya, 1990.Google Scholar
  6. 6.
    Linnik, Yu.V., Metod naimen’shikh kvadratov i osnovy teorii obrabotki nablyudenii (Least Squares Method and Fundamentals of the Theory of Processing of Observations), Moscow Gos. Izd. Fiz.-Mat. Liter., 1958.Google Scholar
  7. 7.
    Yagi, M., Izawa, G., Omori, T., Masumoto, K., and Yoshihara, K., J. Radioanal. Nucl. Chem., 1987, vol. 116, no. 1, p. 213.CrossRefGoogle Scholar
  8. 8.
    Apraksin, V.F., Kolichestvennyi gazokhromatograficheskii analiz. Metodicheskie ukazaniya (Quantitative Gas Chromatographic Analysis: Guidelines), St. Petersburg, 1999.Google Scholar
  9. 9.
    Zenkevich, I.G. and Prokof’ev, D.V., Analitika Kontrol’, 2015, vol. 19, no. 4, p. 302.Google Scholar
  10. 10.
    Cherepitsa, S.V., Bychkov, S.M., Kovalenko, A.N., Mazanik, A.L., Selemina, N.M., and Seredinskaya, O.B., J. Anal. Chem., 2003, vol. 58, no. 3, p. 368.CrossRefGoogle Scholar
  11. 11.
    Cherepitsa, S.V., Bychkov, S.M., Gatsikha, S.V., Kovalenko, A.N., Mazanik, A.L., and Selemina, N.M., Partnery Konkurenty. Laboratorium, 2004, no. 8, p. 35.Google Scholar
  12. 12.
    Charapitsa, S.V., Kavalenka, A.N., Kulevich, N.V., Makoed, N.M., Mazanik, A.L., Sytova, S.N., Zayats, N.I., and Kotov, Yu.N., J. Agric. Food Chem., 2013, vol. 61, p. 2950.CrossRefGoogle Scholar
  13. 13.
    Cherepitsa, S., Zadreiko, Yu., Kulevich, N., and Sytova, S., Stand. Kach., 2014, no. 5, p. 40.Google Scholar
  14. 14.
    Cherepitsa, S.V., Sytova, S.N., Zakharov, M.A., Peschanskaya, V.A., Guguchkina, T.I., Markovskii, M.G., and Yakuba, Yu.F., Vinodel. Vinograd., 2015, no. 2, p. 12.Google Scholar
  15. 15.
    Lemeshko, B.Yu. and Lemeshko, S.B., Izmerit. Tekh., 2005, no. 6, p. 13.Google Scholar
  16. 16.
    Larin, S.L., Kuznetsov, V.V., and Romanenko, S.V., Analitika Kontrol’, 2014, vol. 18, no. 3, p. 310.Google Scholar
  17. 17.
    Zenkevich, I.G., Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim., 1998, no. 2, p. 84.Google Scholar
  18. 18.
    Zenkevich, I.G., Babushok, V.I., Linstrom, P.J., White, E., and Stein, S.E., J. Chromatogr. A, 2009, vol. 1216, p. 6651.CrossRefGoogle Scholar
  19. 19.
    Sturges, H., J. Am. Stat. Assoc., 1926, vol. 21, p. 65.CrossRefGoogle Scholar
  20. 20.
    The NIST 14 Mass Spectral Library (NIST14/2014/EPA/NIH). Software/Data Version (NIST14); NIST Standard Reference Database no. 69, 2014. National Institute of Standards and Technology, Gaithersburg, MD20899. http://webbook.nist.govhttp:// webbook.nist.gov. Cited April, 2016.Google Scholar
  21. 21.
    Zenkevich, I.G. and Pavlovskii, A.A., J. Anal. Chem., 2015, vol. 70, no. 9, p. 1140.CrossRefGoogle Scholar
  22. 22.
    Zenkevich, I.G. and Pavlovskii, A.A., J. Sep. Sci., 2015, vol. 38, p. 2848.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of ChemistrySt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia

Personalised recommendations