Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 5, pp 575–581 | Cite as

An enantioselective voltammetric sensor for the recognition of propranolol stereoisomers

  • A. V. Sidel’nikov
  • V. N. Maistrenko
  • R. A. Zil’berg
  • Yu. A. Yarkaeva
  • E. M. Khamitov
Articles

Abstract

An enantioselective voltammetric sensor for the recognition of propranolol stereoisomers is developed based on a carbon-paste electrode modified with uracil supramolecular structures and the use of chemometric methods. The conditions for the formation of an enantioselective selector on the surface of graphite (graphene) particles and the selective registration of voltammograms of enantiomers, as well as the possibility of the recognition thereof, are studied by methods of molecular dynamics simulation and voltammetry.

Keywords

voltammetry modification carbon-paste electrode uracil enantiomers propranolol chemometrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Menninger, A.L., Nelson, D.L., and Cox, M.M., Principles of Biochemistry, New York Worth, 1993.Google Scholar
  2. 2.
    Izake, E.L., J. Pharm. Sci., 2007, vol. 96, no. 7, p. 1659.CrossRefGoogle Scholar
  3. 3.
    Smirnova, I.G., Gil’deeva, G.N., and Kukes, V.G., Moscow Univ. Chem. Bull., 2012, vol. 67, no. 3, p. 95.CrossRefGoogle Scholar
  4. 4.
    Aboul-Enein, H.Y. and Stefan, R.-I., CRC Crit. Rev. Anal. Chem., 1998, vol. 28, no. 3, p. 259.CrossRefGoogle Scholar
  5. 5.
    Yanilkin, V.V., Nastapova, N.V., and Toropchina, A.V., Ross. Khim. Zh., 2005, vol. 49, no. 5, p. 29.Google Scholar
  6. 6.
    Budnikov, G.K., Evtyugin, G.A., Budnikova, Yu.G., and Al’fonsov, V.A., J. Anal. Chem., 2008, vol. 63, no. 1, p. 2.CrossRefGoogle Scholar
  7. 7.
    Budnikov, G.K., Evtyugin, G.A., and Maistrenko, V.N., Modifitsirovannye elektrody dlya vol’tamperometrii v khimii, biologii i meditsine (Modified Electrodes for Voltammetry in Chemistry, Biology, and Medicine), Moscow BINOM. Laboratoriya znanii, 2010.Google Scholar
  8. 8.
    Trojanowicz, M., Electrochem. Commun., 2014, vol. 38, p. 47.CrossRefGoogle Scholar
  9. 9.
    Iacob, B.-C., Bodoki, E., and Oprean, R., in Handbook of Sustainable Polymers: Processing and Applications, Thakur, V.K. and Thakur, M.K., Eds., Pan Stanford, 2016, p. 587.Google Scholar
  10. 10.
    Bertaso, A., Musile, G., Gottardo, R., Seri, C., and Tagliaro, F., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2015, vol. 1000, p. 130.CrossRefGoogle Scholar
  11. 11.
    Piestansky, J., Marakova, K., Koval, M., Havranek, E., and Mikus, P., Electrophoresis, 2015, vol. 36, no. 24, p. 3069.CrossRefGoogle Scholar
  12. 12.
    Thormann, W., Caslayska, J., and Mosher, R.A., Electrophoresis, 2015, vol. 36, no. 5, p. 773.CrossRefGoogle Scholar
  13. 13.
    Elmongy, H., Ahmed, H., Wahbi, A.-A., Amini, A., Colmsjo, A., and Abdel-Rehim, M., Biomed. Chromatogr., 2016, vol. 30, no. 8, p. 1309.CrossRefGoogle Scholar
  14. 14.
    El-Fatatry, H.M., Mabrouk, M.M., Hammad, S.F., and El-Malla, S.F., J. AOAC Int., 2016, vol. 99, no. 3, p. 604.CrossRefGoogle Scholar
  15. 15.
    Woertz, K., Tissen, C., Kleinebudde, P., and Breitkreutz, J., Int. J. Pharm., 2011, vol. 417, p. 256.CrossRefGoogle Scholar
  16. 16.
    Pein, M., Kirsanov, D., Ciosek, P., del Valle, M., Yaroshenko, I., Wesoly, M., Zabadaj, M., Gonzalez-Calabuig, A., Wroblewski, W., and Legin, A., J. Pharm. Biomed. Anal., 2015, vol. 114, p. 321.CrossRefGoogle Scholar
  17. 17.
    Chen, Q., Zhou, J., Han, Q., Wang, Y., and Fu, Y., J. Solid State Electrochem., 2012, vol. 16, p. 2481.CrossRefGoogle Scholar
  18. 18.
    Chen, Y., Huang, Y., Guo, D., Chen, C., Wang, Q., and Fu, Y., J. Solid State Electrochem., 2014, vol. 18, p. 463.Google Scholar
  19. 19.
    Guo, L., Huang, Y., Zhang, Q., Chen, C., Guo, D., Chen, Y., and Fu, Y., J. Electrochem. Soc., 2014, vol. 161, no. 4, p. B70.Google Scholar
  20. 20.
    Nezhadali, A. and Mojarrab, M., Anal. Chim. Acta, 2016, vol. 924, p. 86.CrossRefGoogle Scholar
  21. 21.
    Maistrenko, V.N., Evtyugin, G.A., Sidel’nikov, A.V., Khimicheskie sensory (Chemical Sensors), vol. 14 of Problemy analiticheskoi khimii (Problems of Analytical Chemistry), Vlasov, Yu.G., Ed., Moscow Nauka, 2011.Google Scholar
  22. 22.
    Esbensen, K., Multivariate Analysis–in Practice, Ålborg, Norway: Ålborg Univ., Esbjerg: CAMO Process, 2001, 5th ed.Google Scholar
  23. 23.
    Sidel’nikov, A.V., Zil’berg, R.A., Yarkaeva, Yu.A., Maistrenko, V.N., and Kraikin, V.A., J. Anal. Chem., 2015, vol. 70, no. 10, p. 1261.CrossRefGoogle Scholar
  24. 24.
    Zil’berg, R.A., Yarkaeva, Yu.A., Maksyutova, E.I., Sidel’nikov, A.V., and Maistrenko, V.N., J. Anal. Chem., 2017, vol. 72, no. 4, p. 348.Google Scholar
  25. 25.
    Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J.C., J. Comput. Chem., 2005, vol. 26, no. 16, p. 1701.CrossRefGoogle Scholar
  26. 26.
    Hess, B., Kutzner, C., Van der Spoel, D., and Lindhal, E., J. Chem. Theory Comput., 2008, vol. 4, p. 435.CrossRefGoogle Scholar
  27. 27.
    Pomerantsev, A.L., Chemometrics in Excel, New York Wiley, 2014.CrossRefGoogle Scholar
  28. 28.
    Barker, M. and Rayens, W., J. Chemom., 2003, vol. 17, no. 3, p. 166.CrossRefGoogle Scholar
  29. 29.
    Sidel’nikov, A.V., Dubrovskii, D.I., Kudasheva, F.Kh., and Maistrenko, V.N., J. Anal. Chem., 2016, vol. 71, no. 11, p. 1109.CrossRefGoogle Scholar
  30. 30.
    Malde, A.K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P.C., Oostenbrink, C., and Mark, A.E., J. Chem. Theory Comput., 2011, vol. 7, no. 12, p. 4026.CrossRefGoogle Scholar
  31. 31.
    Canzar, S., El-Kebir, M., Pool, R., Elbassioni, K., Malde, A.K., Mark, A.E., Geerke, D.P., Stougie, L., and Klau, G.W., J. Comput. Biol., 2013, vol. 20, no. 3, p. 188.CrossRefGoogle Scholar
  32. 32.
    Koziara, K.B., Stroet, M., Malde, A.K., and Mark, A.E., J. Comput.-Aided Mol. Des., 2014, vol. 28, p. 221.CrossRefGoogle Scholar
  33. 33.
    Nigovic, B., Marusic, M., and Juric, S., J. Electroanal. Chem., 2011, vol. 663, p. 72.CrossRefGoogle Scholar
  34. 34.
    Chen, L., Li, K., Zhu, H., Meng, L., Chen, J., Li, M., and Zhu, Z., Talanta, 2013, vol. 105, p. 250.CrossRefGoogle Scholar
  35. 35.
    Oliveira, G.G., Azzi, D.C., Vicentini, F.C., Sartori, E.R., and Fatibello-Filho, O., J. Electroanal. Chem., 2013, vol. 708, p. 73.CrossRefGoogle Scholar
  36. 36.
    Zhang, Q., Guo, L., Huang, Y., Chen, Y., Guo, D., Chen, C., and Fu, Y., Sens. Actuators, B, 2014, vol. 199, p. 239.CrossRefGoogle Scholar
  37. 37.
    Radi, A., Wassel, A.A., and El Ries, M.A., Chem. Anal. (Warsaw, Pol.), 2004, vol. 49, no. 1, p. 51.Google Scholar
  38. 38.
    El-Hady, D.A., Seliem, M.M., Gotti, R., and El-Maali, N.A., Sens. Actuators, B, 2006, vol. 113, p. 978.CrossRefGoogle Scholar
  39. 39.
    Irrera, S. and de Leeuw, N.H., Proc. R. Soc. A, 2011, vol. 467, p. 1959.CrossRefGoogle Scholar
  40. 40.
    Chakraborty, S., Sanz, MiguelP.J., Alberti, F.M., and Das, N., J. Mol. Struct., 2012, vol. 1015, p. 99.CrossRefGoogle Scholar
  41. 41.
    Gus’kov, V.Yu., Gainullina, Yu.Yu., Ivanov, S.P., and Kudasheva, F.Kh., J. Chromatogr. A, 2014, vol. 1356, p. 230.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Sidel’nikov
    • 1
  • V. N. Maistrenko
    • 1
  • R. A. Zil’berg
    • 1
  • Yu. A. Yarkaeva
    • 1
  • E. M. Khamitov
    • 1
  1. 1.Department of ChemistryBashkir State UniversityUfaRussia

Personalised recommendations