Journal of Analytical Chemistry

, Volume 72, Issue 5, pp 533–541 | Cite as

Methodology for separation and elemental analysis of volcanic ash nanoparticles

  • M. S. Ermolin
  • P. S. Fedotov
  • V. K. Karandashev
  • V. M. Shkinev


A methodology for separation, characterization, and quantitative elemental analysis of volcanic ash nanoparticles is proposed. A combination of field-flow fractionation in a rotating coiled column and membrane filtration is used in the isolation and separation of nanoparticles. The size and morphology of nanoparticles were studied by static light scattering and scanning electron microscopy. The concentration of major- and trace elements in the bulk sample and the separated fractions was determined by inductively coupled plasma atomic emission spectrometry and mass spectrometry. It is shown that the total concentrations of most elements in the ash sample are comparable to their average concentrations in the Earth’s crust. On the other side, in the fraction 50–100 nm, the concentrations of Ni, Zn, Ag, Sn, Sb, Pt, Tl, Pb, and Bi are one or two orders of magnitude higher than their total concentrations, which probably indicates the preconcentration of corresponding elements from volcanic gases by nanoparticles. In the fraction represented by water-soluble forms of elements and nanoparticles smaller than 50 nm, Cu, Zn, Pb, and several other elements are found; the partition of elements between the solution and solid phase (nanoparticles) is assessed. The proposed methodology requires further development and application to the analysis of volcanic ash from various regions of the Globe.


volcanic ash nanoparticles elemental composition toxic elements rotating coiled columns fieldflow fractionation membrane filtration inductively coupled plasma atomic emission spectrometry inductively coupled plasma mass spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buzea, C., Pacheco, I.I., and Robbie, K., Biointerphases, 2007, vol. 2, no. 4, p. MR17.Google Scholar
  2. 2.
    Taylor, D.A., Environ. Health Perspect., 2002, vol. 110, p. A80.Google Scholar
  3. 3.
    Bay, R.C., Bramall, N., and Price, P.B., Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 17, p. 6341.CrossRefGoogle Scholar
  4. 4.
    Cather, S.M., Dunbar, N.W., McDowell, F.W., McIntosh, W.C., and Scholle, P.A., Geosphere, 2009, vol. 5, no. 3, p. 315.CrossRefGoogle Scholar
  5. 5.
    Martin, J.H. and Fitzwater, S.E., Nature, 1988, vol. 331, p. 341.CrossRefGoogle Scholar
  6. 6.
    Moore, J.K., Doney, S.C., Glover, D.M., and Fung, I.Y., Deep Sea Res., Part II,2002, vol. 49, p. 463.Google Scholar
  7. 7.
    Maters, E.C., Delmelle, P., and Bonneville, S., Environ. Sci. Technol., 2016, vol. 50, no. 10, p. 5033.CrossRefGoogle Scholar
  8. 8.
    Olgun, N., Duggen, S., Andronico, D., Kutterolf, S., Croot, P.L., Giammano, S., Censi, P., and Randazzo, L., Mar. Chem., 2013, vol. 152, p. 32.CrossRefGoogle Scholar
  9. 9.
    Lin, I.I., Hu, C., Li, Y.H., Ho, T.Y., Fischer, T.P., Wong, G.T.F., Wu, J., Huang, C.W., Chu, D.A., Ko, D.S., and Chen, J.P., Glob. Biochem. Cycles, 2011, vol. 25, p. GB1006.Google Scholar
  10. 10.
    Lindenthal, A., Langmann, B., Patsch, J., Lorkowski, I., and Hor, M., Biogeosciences, 2013, vol. 10, p. 3715.CrossRefGoogle Scholar
  11. 11.
    Bains, S., Norris, R.D., Corfield, R.M., and Faul, K.L., Nature, 2000, vol. 407, p. 171.CrossRefGoogle Scholar
  12. 12.
    Sigman, D.M. and Boyle, E.A., Nature, 2000, vol. 407, p. 859.CrossRefGoogle Scholar
  13. 13.
    Kadar, E., Fisher, A., Stolpe, B., Calabrese, S., Lead, J., Valsami-Jones, E., and Shi, Z., Sci. Total Environ., 2014, vol. 466-467, p. 864.CrossRefGoogle Scholar
  14. 14.
    Raiswell, R., Benning, L.G., Tranter, M., and Tulaczyk, S., Geochem. Trans., 2008, vol. 9, p. 7.CrossRefGoogle Scholar
  15. 15.
    Mott, J.A., Meyer, P., Mannino, D., Redd, S.C., Smith, E.M., Gotway-Crawford, C., and Chase, E., West J. Med., 2002, vol. 176, p. 157.Google Scholar
  16. 16.
    Tepe, N. and Bau, M., Sci. Total Environ., 2014, vols. 488–489, p. 243.CrossRefGoogle Scholar
  17. 17.
    Ermolin, M.S., Fedotov, P.S., Ivaneev, A.I., Karandashev, V.K., Fedyunina, N.N., and Eskina, V.V., J. Anal. Chem., 2017, vol. 72 (in press).Google Scholar
  18. 18.
    Ermolin, M.S. and Fedotov, P.S., Rev. Anal. Chem., 2016, vol. 35, no. 4, p. 185.CrossRefGoogle Scholar
  19. 19.
    Fedotov, P.S., Ermolin, M.S., Karandashev, V.K., and Ladonin, D.V., Talanta, 2014, vol. 130, p. 1.CrossRefGoogle Scholar
  20. 20.
    Shkinev, V.M., Ermolin, M.S., Fedotov, P.S., Borisov, A.P., Karandashev, V.K., and Spivakov, B.Ya., Geochem. Int., 2016, vol. 54, no. 13, p. 1256.CrossRefGoogle Scholar
  21. 21.
    Fedotov, P.S., Ermolin, M.S., and Katasonova, O.N., J. Chromatogr. A, 2015, vol. 1381, p. 202.CrossRefGoogle Scholar
  22. 22.
    Karandashev, V.K., Khvostikov, V.A., Nosenko, S.Yu., and Burmii, Zh.P., Zavod. Lab., Diagn. Mater., 2016, vol. 82, no. 7, p. 6.Google Scholar
  23. 23.
    Vinogradov, A.P., Geokhimiya, 1962, no. 7, p. 555.Google Scholar
  24. 24.
    Ball, J.G.C., Reed, B.E., Grainger, R.G., Peters, D.M., Mather, T.A., and Pyle, D.M., J. Geophys. Res.: Atmos., 2015, vol. 120, no. 15, p. 7747.Google Scholar
  25. 25.
    Kandler, K., Benker, N., Bundke, U., Cuevas, E., Ebert, M., Knippertz, P., Rodriguez, S., Schutz, L., and Weinbruch, S., Atmos. Environ., 2007, vol. 41, no. 37, p. 8058.CrossRefGoogle Scholar
  26. 26.
    Menyailov, I.A. and Nikitina, L.P., Bull. Volcanol., 1980, vol. 43, p. 195.CrossRefGoogle Scholar
  27. 27.
    Zelenski, M.E., Fischer, T.P., de Moor, J.M., Marty, B., Zimmermann, L., Ayalew, D., Nekrasov, A.N., and Karandashev, V.K., Chem. Geol., 2013, vol. 357, p. 95.CrossRefGoogle Scholar
  28. 28.
    Zoller, W.H., Gladney, E.S., and Duce, R.A., Science, 1974, vol. 183, p. 198.CrossRefGoogle Scholar
  29. 29.
    Duce, R.A., Hoffman, G.L., and Zoller, W.H., Science, 1975, vol. 187, p. 59.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. S. Ermolin
    • 1
    • 2
  • P. S. Fedotov
    • 1
    • 2
  • V. K. Karandashev
    • 1
    • 3
  • V. M. Shkinev
    • 2
  1. 1.National University of Science and Technology “MISiS”MoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Microelectronics Technology and High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations