Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 5, pp 520–532 | Cite as

Isolation and quantitative analysis of road dust nanoparticles

  • M. S. Ermolin
  • P. S. Fedotov
  • A. I. Ivaneev
  • V. K. Karandashev
  • N. N. Fedyunina
  • V. V. Eskina
Articles

Abstract

Nanoparticles are capable of preconcentrating various elements, including toxic ones; they have high mobility in the environment and can easily penetrate into a human body. The study of the chemical composition and properties of road dust nanoparticles is an urgent task of analytical chemistry, which needs to be addressed in the monitoring of the anthropogenic load on the environment and the assessment of the potential danger of pollution to human health. In the present paper, we propose a new approach for the isolation, characterization, and quantitative elemental analysis of road dust nanoparticles. Conditions are selected for the separation of nanoparticles from Moscow dust samples by field-flow fractionation in a rotating coiled column; the resulting fractions are characterized by independent methods (using static light scattering and electron microscopy); the method for calculating the concentration of elements in the nanoparticle fraction according to inductively coupled plasma atomic emission spectrometry and mass spectrometry is improved; elements in a water-soluble form are isolated and determined; and the role of soluble organic matter in the binding of trace elements is discussed. It is shown that the total concentration of most elements in the samples of Moscow dust is comparable to the average values for urban soils. Abnormally high concentrations of several elements (Cu, Zn, Ag, Cd, Sn, Sb, Hg, Pb, Tl, and Bi) are revealed in the fraction of nanoparticles; the enrichment factor with respect to the total concentration ranges from 10 to 450. The source of contamination of road dust nanoparticles with copper, zinc, antimony, and cadmium is highly probable wearing-off of brake pads and car tires. The developed procedure of separation, characterization, and analysis of nanoparticles can be used for other polydisperse environmental samples (for example, volcanic ash).

Keywords

road dust nanoparticles quantitative analysis toxic elements rotating coiled columns field-flow fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi, K. and Tainosho, Y., Environ. Int., 2004, vol. 30, no. 8, p. 1009.CrossRefGoogle Scholar
  2. 2.
    Mummullage, S., Egodawatta, P., Ayoko, G.A., and Goonetilleke, A., Sci. Total Environ., 2015, vol. 541, p. 1303.CrossRefGoogle Scholar
  3. 3.
    Varrica, D., Bardelli, F., Dongarrà, G., and Tamburo, E., Atmos. Environ., 2013, vol. 64, p. 18.CrossRefGoogle Scholar
  4. 4.
    Thorpe, A. and Harrison, R.M., Sci. Total Environ., 2008, vol. 400, no. 1, p. 270.CrossRefGoogle Scholar
  5. 5.
    McKenzie, E.R., Money, J.E., Green, P.G., and Young, T.M., Sci. Total Environ., 2009, vol. 407, no. 22, p. 5855.CrossRefGoogle Scholar
  6. 6.
    Smolders, E. and Degryse, F., Environ. Sci. Technol., 2002, vol. 36, no. 17, p. 3706.CrossRefGoogle Scholar
  7. 7.
    Hjortenkrans, D.S., Bergback, B.G., and Haggerud, A.V., Environ. Sci. Technol., 2007, vol. 41, no. 15, p. 5224.CrossRefGoogle Scholar
  8. 8.
    Kennedy, P. and Gadd, J., Preliminary Examination of Trace Elements in Tyres, Brake Pads and Road Bitumen in New Zealand, Wellington Kingett Mitchell, 2003.Google Scholar
  9. 9.
    Councell, T.B., Duckenfiel, K.U., Landa, E.R., and Callender, E., Environ. Sci. Technol., 2004, vol. 38, no. 15, p. 4206.CrossRefGoogle Scholar
  10. 10.
    Jang, H.-N., Seo, Y.-C., Lee, J.-H., Hwang, K.-W., Yoo, J.-I., Sok, C.-H., and Kim, S.-H., Atmos. Environ., 2007, vol. 41, no. 5, p. 1053.CrossRefGoogle Scholar
  11. 11.
    Barefoot, R.R., TrAC, Trends Anal. Chem., 1999, vol. 18, no. 11, p. 702.CrossRefGoogle Scholar
  12. 12.
    Zereini, F., Wiseman, C., Beyer, J.M., Artelt, S., and Urban, H., J. Soils Sediments, 2001, vol. 1, no. 3, p. 188.CrossRefGoogle Scholar
  13. 13.
    Mohammadi, S.Z., Karimi, M.A., Hamidian, H., Baghelani, Y.M., and Karimzadeh, L., Sci. Iran., Trans. F, 2011, vol. 18, p. 1636.CrossRefGoogle Scholar
  14. 14.
    Okorie, I.A., Enwistle, J., and Dean, J.R., Curr. Sci., 2015, vol. 109, no. 5, p. 938.CrossRefGoogle Scholar
  15. 15.
    Davis, A.P., Shokouhian, M., and Ni, S., Chemosphere, 2001, vol. 44, no. 5, p. 997.CrossRefGoogle Scholar
  16. 16.
    Sternbeck, J., Sjodin, A., and Andreasson, K., Atmos. Environ., 2002, vol. 36, no. 30, p. 4735.CrossRefGoogle Scholar
  17. 17.
    Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., and Simoneit, B.R., Environ. Sci. Technol., 1993, vol. 27, no. 9, p. 1892.CrossRefGoogle Scholar
  18. 18.
    Kittelson, D.B., J. Aerosol Sci., 1998, vol. 29, nos. 5–6, p. 575.CrossRefGoogle Scholar
  19. 19.
    Garg, B.D., Cadle, S.H., Mulawa, P.A., Groblicki, P.J., Laroo, C., and Parr, G.A., Environ. Sci. Technol., 2000, vol. 34, no. 21, p. 4463.CrossRefGoogle Scholar
  20. 20.
    Fedotov, P.S., Ermolin, M.S., Karandashev, V.K., and Ladonin, D.V., Talanta, 2014, vol. 130, p. 1.CrossRefGoogle Scholar
  21. 21.
    Buzea, C., Pacheco, I.I., and Robbie, K., Biointerphases, 2007, vol. 2, no. 4, p. MR17.Google Scholar
  22. 22.
    Oberdorster, G., Int. Arch. Occup. Environ. Health, 2001, vol. 74, p. 1.CrossRefGoogle Scholar
  23. 23.
    Geiser, M. and Kreyling, W.G., Part. Fibre Toxicol., 2010, vol. 7, p. 1.CrossRefGoogle Scholar
  24. 24.
    Ermolin, M.S. and Fedotov, P.S., Rev. Anal. Chem., 2016, vol. 35, no. 4, p. 185.CrossRefGoogle Scholar
  25. 25.
    Fedotov, P.S., Vanifatova, N.G., Shkinev, V.M., and Spivakov, B.Ya., Anal. Bioanal. Chem., 2011, vol. 400, p. 1787.CrossRefGoogle Scholar
  26. 26.
    Shkinev, V.M., Ermolin, M.S., Fedotov, P.S., Borisov, A.P., Karandashev, V.K., and Spivakov, B.Ya., Geochem. Int., 2016, vol. 54, no. 13, p. 1256.CrossRefGoogle Scholar
  27. 27.
    Fedotov, P.S., Ermolin, M.S., and Katasonova, O.N., J. Chromatogr. A, 2015, vol. 1381, p. 202.CrossRefGoogle Scholar
  28. 28.
    Karandashev, V.K., Khvostikov, V.A., Nosenko, S.Yu., and Burmii, Zh.P., Zavod. Lab. Diagn. Mater., 2016, vol. 82, no. 7, p. 6.Google Scholar
  29. 29.
    Alekseenko, V. and Alekseenko, A., J. Geochem. Explor., 2014, vol. 147, p. 245.CrossRefGoogle Scholar
  30. 30.
    Kandler, K., Benker, N., Bundke, U., Cuevas, E., Ebert, M., Knippertz, P., Rodriguez, S., Schutz, L., and Weinbruch, S., Atmos. Environ., 2007, vol. 41, no. 37, p. 8058.CrossRefGoogle Scholar
  31. 31.
    Nunez, M. and Oke, T.R., J. Appl. Meteorol., 1977, vol. 16, p. 11.CrossRefGoogle Scholar
  32. 32.
    Wehner, B., Birmili, W., Gnauk, T., and Wiedensohler, A., Atmos. Environ., 2002, vol. 36, no. 13, p. 2215.CrossRefGoogle Scholar
  33. 33.
    Aiken, G.R., Hsu-Kim, H., and Ryan, J.N., Environ. Sci. Technol., 2011, vol. 45, no. 8, p. 3196.CrossRefGoogle Scholar
  34. 34.
    Stolpe, B., Guo, L., Shiller, A.M., and Aiken, G.R., Geochim. Cosmochim. Acta, 2013, vol. 105, p. 221.CrossRefGoogle Scholar
  35. 35.
    Vega, F.A. and Weng, L., Water Res., 2013, vol. 47, p. 363.CrossRefGoogle Scholar
  36. 36.
    Wu, F., Evans, D., Dillon, P., and Schiff, S., J. Anal. At. Spectrom., 2004, vol. 19, p. 979.CrossRefGoogle Scholar
  37. 37.
    Neubauer, E.V.D., Kammer, F., and Hofmann, T., Water Res., 2013, vol. 47, p. 2757.CrossRefGoogle Scholar
  38. 38.
    Worms, I.A.M., Szigeti, Z.A.G., Dubascoux, S., Lespes, G., Traber, J., Sigg, L., and Slaveykova, V.I., Water Res., 2010, vol. 44, p. 340.CrossRefGoogle Scholar
  39. 39.
    Luan, H. and Vadas, T.M., Environ. Pollut., 2015, vol. 197, p. 76.CrossRefGoogle Scholar
  40. 40.
    Yu, S.J., Yin, Y.G., and Liu, J.F., Environ. Sci.: Processes Impacts, 2013, vol. 15, p. 78.Google Scholar
  41. 41.
    Fabrega, J., Luoma, S.N., Tyler, C.R., Galloway, T.S., and Lead, J.R., Environ. Int., 2011, vol. 37, no. 2, p. 517.CrossRefGoogle Scholar
  42. 42.
    Gottschalk, F. and Nowack, B., J. Environ. Monit., 2011, vol. 13, p. 1145.CrossRefGoogle Scholar
  43. 43.
    Zhang, L. and Wong, M.H., Environ. Int., 2007, vol. 33, no. 1, p. 108.CrossRefGoogle Scholar
  44. 44.
    Streets, D.G., Hao, J.M., Wu, Y., Jiang, J.K., Chan, M., Tian, H.Z., and Feng, X., Atmos. Environ., 2005, vol. 39, no. 40, p. 7789.CrossRefGoogle Scholar
  45. 45.
    Yuen, J.Q., Olin, P.H., Lim, H.S., Benner, S.G., Sutherland, R.A., and Ziegler, A.D., J. Environ. Manage., 2012, vol. 101, p. 151.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. S. Ermolin
    • 1
    • 2
  • P. S. Fedotov
    • 1
    • 2
  • A. I. Ivaneev
    • 1
  • V. K. Karandashev
    • 1
    • 3
  • N. N. Fedyunina
    • 1
  • V. V. Eskina
    • 1
  1. 1.National University of Science and Technology “MISiS”MoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Microelectronics Technology and High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations