Journal of Analytical Chemistry

, Volume 72, Issue 3, pp 243–255 | Cite as

Methods of nonenzymatic determination of hydrogen peroxide and related reactive oxygen species

  • A. Yu. Olenin


Contemporary nonenzymatic methods for the qualitative and quantitative determination of hydrogen peroxide and reactive oxygen species, preceding to hydrogen peroxide or resulting from it, are reviewed. Many of these procedures can be applied to the detection and determination of reactive oxygen species, for example, anions, peroxide radical anions, hydroxide radicals, etc., in both model and real samples that are of practical importance in biochemistry and medicine. The main direction of development in this area includes the target formation of a surface layer of a sensing element at the nanoscale level, including using nanoparticles. In some cases, higher selectivity can be achieved, and the analytical and performance characteristics of the procedures, such as minimum detectable concentration, analytical range, or sensitivity, can be improved. Most of the cited papers were published after 2010.


hydrogen peroxide reactive oxygen species methods of determination 







anodized aluminum oxide


graphite in ionic liquid


surface-enhanced Raman scattering


ionic liquid


Raman scattering


multiwalled carbon nanotubes




indium tin oxide


single-walled carbon nanotubes


poly(p-aminobenzoic acid)


polyvinyl alcohol


surface plasmon resonance


poly(2,2':5',2"-terthiophen-3-benzoic acid)


glassy carbon


carbon fiber


carbon ceramic


carbon paste


cyclic voltammetry


electrochemical impedance spectroscopy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beloborodova, N., Bairamov, I., Olenin, A., Shubina, V., Teplova, V., and Fedotcheva, N., J. Biomed. Sci., 2012, vol. 19, 89. doi: 10.1186/1423-0127-19-89CrossRefGoogle Scholar
  2. 2.
    Ho, C.-M., Wong, C.-K., Yau, S.K.-W., Lok, C.-N., and Che, C.-M., Chem. Asian J., 2011, vol. 6, no. 9, p. 2506.CrossRefGoogle Scholar
  3. 3.
    He, D., Miller, C.J., and Waite, T.D., J. Catal., 2014, vol. 317, p. 198.CrossRefGoogle Scholar
  4. 4.
    Miao, P., Wang, B., Yin, J., Chen, X., and Tang, Y., Electrochem. Commun., 2015, vol. 53, p. 37.CrossRefGoogle Scholar
  5. 5.
    Meng, F., Zhu, X., and Miao, P., Chem. Phys. Lett., 2015, vol. 635, p. 213.CrossRefGoogle Scholar
  6. 6.
    He, W., Zhou, Y.-T., Wamer, W.G., Boudreau, M.D., and Yin, J.J., Biomaterials, 2012, vol. 33, p. 7547.CrossRefGoogle Scholar
  7. 7.
    Zamfir, L.-G., Rotariu, L., Marinescu, V.E., Simelane, X.T., Baker, P.G.L., Iwuoha, E.I., and Bala, C., Sens. Actuators, B, 2016, vol. 226, p. 525.CrossRefGoogle Scholar
  8. 8.
    Hua, M.-Y., Chen, H.-C., Chuang, C.-K., Tsai, R.-Y., Jeng, J.-L., Yang, H.-W., and Chern, Y.-T., Biomaterials, 2011, vol. 32, no. 21, p. 4885.CrossRefGoogle Scholar
  9. 9.
    Anjum, S., Liu, Z., Gao, W., Qi, W., Gilani, M.R.H.S., Ahmad, M., Aziz-ur-Rehman, and Xu, G., J. Electroanal. Chem., 2015, vol. 750, p. 74.Google Scholar
  10. 10.
    Qin, X., Wang, H., Miao, Z., Li, J., and Chen, Q., Talanta, 2015, vol. 139, p. 56.CrossRefGoogle Scholar
  11. 11.
    Kurowska-Tabor, E., Jaskula, M., and Sulka, G.D., Electroanalysis, 2015, vol. 27, no. 8, p. 1968.CrossRefGoogle Scholar
  12. 12.
    Zhang, M., Zhang, Y., Liu, P., Chen, M., Cai, Z., and Cheng, F., Int. J. Electrochem. Sci., 2015, vol. 10, no. 5, p. 4314.Google Scholar
  13. 13.
    Sophia, J. and Muralidharan, G., Sens. Actuators, B, 2014, vol. 193, p. 149.CrossRefGoogle Scholar
  14. 14.
    Tian, L., Feng, Y., Qi, Y., Wang, B., Chen, Y., and Fu, X., Microchim. Acta, 2012, vol. 177, nos. 1–2, p. 39.CrossRefGoogle Scholar
  15. 15.
    Wang, Q. and Zheng, J., Microchim. Acta, 2010, vol. 169, no. 3, p. 361.CrossRefGoogle Scholar
  16. 16.
    Amiri, M., Nouhi, S., and Azizian-Kalandaragh, Y., Mater. Chem. Phys., 2015, vol. 155, p. 129.CrossRefGoogle Scholar
  17. 17.
    Tajabadi, M.T., Basirun, W.J., Lorestani, F., Zakaria, R., Baradaran, S., Amin, Y.M., Mahmoudian, M.R., Rezayi, M., and Sookhakian, M., Electrochim. Acta, 2015, vol. 151, p. 126.CrossRefGoogle Scholar
  18. 18.
    Meng, F., Yan, X., Liu, J., Gu, J., and Zou, Z., Electrochim. Acta, 2011, vol. 56, no. 12, p. 4657.CrossRefGoogle Scholar
  19. 19.
    Li, Y., Ma, J., and Ma, Z., Electrochim. Acta, 2013, vol. 108, p. 435.CrossRefGoogle Scholar
  20. 20.
    Yin, G., Xing, L., Ma, X.-J., and Wan, J., Chem. Pap., 2014, vol. 68, no. 4, p. 435.CrossRefGoogle Scholar
  21. 21.
    Kawde, A.-N., Aziz, M., Baig, N., and Temerk, Y., J. Electroanal. Chem., 2015, vol. 740, p. 68.CrossRefGoogle Scholar
  22. 22.
    Sophia, J. and Muralidharan, G., J. Electroanal. Chem., 2015, vol. 739, p. 115.CrossRefGoogle Scholar
  23. 23.
    Momeni, S. and Nabipour, I., Appl. Biochem. Biotechnol., 2015, vol. 176, no. 7, p. 1937.CrossRefGoogle Scholar
  24. 24.
    Liu, D., Guo, Q., Zhang, X., Hou, H., and You, T., J. Colloid Interface Sci., 2015, vol. 450, p. 168.CrossRefGoogle Scholar
  25. 25.
    Peng, Y., Yan, Z., Wu, Y., and Di, J., RSC Adv., 2015, vol. 5, no. 11, p. 7854.CrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Luo, H.Q., and Li, N.B., Bioprocess Biosyst. Eng., 2011, vol. 34, no. 2, p. 215.CrossRefGoogle Scholar
  27. 27.
    Komkova, M.A., Karyakina, E.E., Marken, F., and Karyakin, A.A., Anal. Chem., 2013, vol. 85, no. 5, p. 2574.CrossRefGoogle Scholar
  28. 28.
    Yu, Q., Shi, Z., Liu, X., Luo, S., and Wei, W., J. Electroanal. Chem., 2011, vol. 655, p. 92.CrossRefGoogle Scholar
  29. 29.
    Kanyong, P., Rawlinson, S., and Davis, J., J. Electroanal. Chem., 2016, vol. 766, p. 147.CrossRefGoogle Scholar
  30. 30.
    Razmi, H. and Mohammad-Rezaei, R., Microchim. Acta, 2010, vol. 171, no. 3, p. 257.CrossRefGoogle Scholar
  31. 31.
    Zhang, D., Zhangn, J., Zhang, R., Shi, H., Guo, Y., Guo, X., Li, S., and Yuann, B., Talanta, 2015, vol. 144, p. 1176.CrossRefGoogle Scholar
  32. 32.
    Ensafi, A.A., Abarghoui, M.M., and Rezaei, B., Sens. Actuators, B, 2014, vol. 196, p. 398.CrossRefGoogle Scholar
  33. 33.
    Zhang, Z., Gu, S., Ding, Y., and Jin, J., Anal. Chim. Acta, 2012, vol. 745, p. 112.CrossRefGoogle Scholar
  34. 34.
    Wang, B., Luo, L., Ding, Y., Zhao, D., and Zhang, Q., Colloids Surf., B, 2012, vol. 97, p. 51.CrossRefGoogle Scholar
  35. 35.
    Dutta, A.K., Das, S., Samanta, P.K., Roy, S., Adhikary, B., and Biswas, P., Electrochim. Acta, 2014, vol. 144, p. 282.CrossRefGoogle Scholar
  36. 36.
    Gao, P., Gong, Y., Mellott, N.P., and Liu, D., Electrochim. Acta, 2015, vol. 173, p. 31.CrossRefGoogle Scholar
  37. 37.
    Ping, J., Ru, S., Fan, K., Wu, J., and Ying, Y., Microchim. Acta, 2010, vol. 171, no. 1, p. 117.CrossRefGoogle Scholar
  38. 38.
    Yan, Z., Zhao, J., Qin, L., Mu, F., Wang, P., and Feng, X., Microchim. Acta, 2013, vol. 180, no. 1, p. 145.CrossRefGoogle Scholar
  39. 39.
    Gao, P. and Liu, D., Microchim. Acta, 2015, vol. 182, no. 7, p. 1231.CrossRefGoogle Scholar
  40. 40.
    Chirizzi, D., Guascito, M.R., Filippo, E., Malitesta, C., and Tepore, A., Talanta, 2016, vol. 147, p. 124.CrossRefGoogle Scholar
  41. 41.
    Cao, X., Wang, N., Wang, L., Mo, C., Xu, Y., Cai, X., and Lin, G., Sens. Actuators, B, 2010, vol. 147, no. 2, p. 730.CrossRefGoogle Scholar
  42. 42.
    Song, E. and Choi, J.-W., J. Micromech. Microeng., 2014, vol. 24, no. 6.Google Scholar
  43. 43.
    Lorestani, F., Shahnavaz, Z., Nia, P.M., Alias, Y., and Manan, N.S.A., Appl. Surf. Sci., 2015, vol. 347, p. 816.CrossRefGoogle Scholar
  44. 44.
    Lorestani, F., Nia, P.M., Alias, Y., and Mananz, N.S.A., J. Electrochem. Soc., 2015, vol. 162, no. 7, p. B193.CrossRefGoogle Scholar
  45. 45.
    Ding, J., Zhang, K., Wei, G., and Su, Z., RSC Adv., 2015, vol. 5, no. 85, p. 69745.CrossRefGoogle Scholar
  46. 46.
    Ding, R., Fan, X., Xue, L., Ma, X., Chen, S., and Luo, Z., Anal. Lett., 2015, vol. 48, no. 11, p. 1686.CrossRefGoogle Scholar
  47. 47.
    Narang, J., Chauhan, N., and Pundir, C.S., Analyst, 2011, vol. 136, no. 21, p. 4460.CrossRefGoogle Scholar
  48. 48.
    Jakubec, P., Urbanova, V., Markova, Z., and Zboril, R., Electrochim. Acta, 2015, vol. 153, p. 62.CrossRefGoogle Scholar
  49. 49.
    Chairam, S., Sroysee, W., Boonchit, C., Kaewprom, C., Wangnoi, T.G.N., Amatatongchai, M., Jarujamrus, P., Tamaung, S., and Somsook, E., Int. J. Electrochem. Sci., 2015, vol. 10, no. 6, p. 4611.Google Scholar
  50. 50.
    Qi, C. and Zheng, J., J. Electroanal. Chem., 2015, vol. 747, p. 53.CrossRefGoogle Scholar
  51. 51.
    Abdelwahab, A.A. and Shim, Y.-B., Sens. Actuators, B, 2014, vol. 201, p. 51.CrossRefGoogle Scholar
  52. 52.
    Tian, Y., Liu, Y., Wang, W., Zhang, X., and Peng, W., J. Nanopart. Res., 2015, vol. 17, no. 4, p. 193.CrossRefGoogle Scholar
  53. 53.
    Ensafi, A.A., Zandi-Atashbar, N., Ghiaci, M., Taghizadeh, M., and Rezaei, B., Mater. Sci. Eng. C, 2015, vol. 47, p. 290.CrossRefGoogle Scholar
  54. 54.
    Yin, J., Qi, X., Yang, L., Hao, G., Li, J., and Zhong, J., Electrochim. Acta, 2011, vol. 56, no. 11, p. 3884.CrossRefGoogle Scholar
  55. 55.
    Kundu, M.K., Sadhukhan, M., and Barman, S., J. Mater. Chem. B, 2015, vol. 3, no. 7, p. 1289.CrossRefGoogle Scholar
  56. 56.
    Khan, A.Y. and Bandyopadhyaya, R., J. Electroanal. Chem., 2014, vol. 727, p. 184.CrossRefGoogle Scholar
  57. 57.
    Yang, Z., Qi, C., Zheng, X., and Zheng, J., J. Electroanal. Chem., 2015, vol. 754, p. 138.CrossRefGoogle Scholar
  58. 58.
    Yang, Z., Qi, C., Zheng, X., and Zheng, J., Microchim. Acta, 2016, vol. 183, no. 3, p. 1131.CrossRefGoogle Scholar
  59. 59.
    Habibi, B., Jahanbakhshi, M., and Pournaghi-Azar, M.H., Microchim. Acta, 2012, vol. 177, nos. 1–2, p. 185.CrossRefGoogle Scholar
  60. 60.
    Zhang, D., Zhang, Y., Yang, C., Ge, C., Wang, Y., Wang, H., and Liu, H., Nanotecnology, 2015, vol. 26, no. 33.Google Scholar
  61. 61.
    Habibi, B. and Jahanbakhshi, M., Sens. Actuators, B, 2014, vol. 203, p. 919.CrossRefGoogle Scholar
  62. 62.
    Azizi, S.N., Ghasemi, S., Samadi-Maybodi, A., and Ranjbar-Azad, M., Sens. Actuators, B, 2015, vol. 216, p. 271.CrossRefGoogle Scholar
  63. 63.
    Zhao, W., Wang, H., Qina, X., Wang, X., Zhao, Z., Miao, Z., Chen, L., Shan, M., Fang, Y., and Chen, Q., Talanta, 2009, vol. 80, no. 2, p. 1029.CrossRefGoogle Scholar
  64. 64.
    Bai, J. and Jiang, X., Anal. Chem., 2013, vol. 85, no. 17, p. 8095.CrossRefGoogle Scholar
  65. 65.
    Luo, B., Li, X., Yang, J., Li, X., Xue, L., Li, X., Gu, J., Wang, M., and Jiang, L., Anal. Methods, 2014, vol. 6, no. 4, p. 1114.CrossRefGoogle Scholar
  66. 66.
    Ye, D., Li, H., Liang, G., Luo, J., Zhang, X., Zhang, S., Chen, H., and Kong, J., Electrochim. Acta, 2013, vol. 109, p. 195.CrossRefGoogle Scholar
  67. 67.
    Yan, Q., Wang, Z., Zhang, J., Peng, H., Chen, X., Hou, H., and Liu, C., Electrochim. Acta, 2012, vol. 61, p. 148.CrossRefGoogle Scholar
  68. 68.
    Fang, Y., Zhang, D., Qin, X., Miao, Z., Takahashi, S., Anzai, J.-I., and Chen, Q., Electrochim. Acta, 2012, vol. 70, p. 266.CrossRefGoogle Scholar
  69. 69.
    Luo, L., Li, F., Zhu, L., Zhang, Z., Ding, Y., and Deng, D., Electrochim. Acta, 2012, vol. 77, p. 179.CrossRefGoogle Scholar
  70. 70.
    Pang, P., Yang, Z., Xiao, S., Xie, J., Zhang, Y., and Gao, Y., J. Electroanal. Chem., 2014, vol. 727, p. 27.CrossRefGoogle Scholar
  71. 71.
    Zhang, M., Sheng, Q., Nie, F., and Zheng, J., J. Electroanal. Chem., 2014, vol. 730, p. 10.CrossRefGoogle Scholar
  72. 72.
    Xi, L., Shou, D., and Wang, F., J. Electroanal. Chem., 2015, vol. 747, p. 83.CrossRefGoogle Scholar
  73. 73.
    Barman, K. and Jasimuddin, S., RSC Adv., 2016, vol. 6, no. 25, p. 20800.CrossRefGoogle Scholar
  74. 74.
    Cui, S., Li, Y., Deng, D., Zeng, L., Yan, X., Qian, J., and Luo, L., RSC Adv., 2016, vol. 6, no. 4, p. 2632.CrossRefGoogle Scholar
  75. 75.
    Sahin, O.G., Electrochim. Acta, 2015, vol. 180, p. 873.CrossRefGoogle Scholar
  76. 76.
    Ovenston, T.C.J. and Rees, W.T., Analyst, 1950, vol. 75, no. 889, p. 204.CrossRefGoogle Scholar
  77. 77.
    Morosanova, E.I., Belyakov, M.V., and Zolotov, Yu.A., J. Anal. Chem., 2012, vol. 67, no. 2, p. 151.CrossRefGoogle Scholar
  78. 78.
    Xu, M., Bunes, B.R., and Zang, L., ACS Appl. Mater. Interfaces, 2011, vol. 3, no. 3, p. 642.CrossRefGoogle Scholar
  79. 79.
    Tsaplev, Yu.B., J. Anal. Chem., 2012, vol. 67, no. 6, p. 506.CrossRefGoogle Scholar
  80. 80.
    Guo, J.-Z., Cui, H., Zhou, W., and Wang, W., J. Photochem. Photobiol., A, 2008, vol. 193, nos. 2–3, p. 89.CrossRefGoogle Scholar
  81. 81.
    Wang, L., Yang, P., Li, Y., Chen, H., Li, M., and Luo, F., Talanta, 2007, vol. 72, no. 3, p. 1066.CrossRefGoogle Scholar
  82. 82.
    Chaichi, M.J., Azizi, S.N., and Heidarpour, M., Spectrochim. Acta, Part A, 2013, vol. 116, p. 594.CrossRefGoogle Scholar
  83. 83.
    Khajvand, T., Chaichi, M.J., and Colagar, A.H., Food Chem., 2015, vol. 173, p. 514.CrossRefGoogle Scholar
  84. 84.
    Yang, L., Jin, M., Du, P., Chen, G., Zhang, C., Wang, J., Jin, F., Shao, H., She, Y., Wang, S., Zheng, L., and Wang, J., PLoS ONE, 2015, vol. 10, no. 7.Google Scholar
  85. 85.
    Kaviyarasan, K., Anandan, S., Mangalaraja, R.V., Sivasankar, T., and Ashokkumar, M., Ultrason. Sonochem., 2016, vol. 29, p. 388.CrossRefGoogle Scholar
  86. 86.
    CRC Handbook of Chemistry and Physics, Haynes, W.M., Ed., Denver: CRC, 2002, 83rd ed.Google Scholar
  87. 87.
    Endo, T., Yanagida, Y., and Hatsuzawa, T., Measurement, 2008, vol. 41, no. 9, p. 1045.CrossRefGoogle Scholar
  88. 88.
    Han, D.-M., Zhang, Q.M., and Serpe, M.J., Nanoscale, 2015, vol. 7, no. 6, p. 2784.CrossRefGoogle Scholar
  89. 89.
    Parnklang, T., Lamlua, B., Gatemala, H., Thammacharoen, C., Kuimalee, S., Lohwongwatana, B., and Ekgasit, S., Mater. Chem. Phys., 2015, vol. 153, p. 127.CrossRefGoogle Scholar
  90. 90.
    Parnklang, T., Lertvachirapaiboon, C., Pienpinijtham, P., Wongravee, K., Thammacharoen, C., and Ekgasit, S., RSC Adv., 2013, vol. 3, no. 31, p. 12886.CrossRefGoogle Scholar
  91. 91.
    Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., and Schultz, S., J. Chem. Phys., 2002, vol. 116, no. 15, p. 6755.CrossRefGoogle Scholar
  92. 92.
    Lu, L., Kobayashi, A., Tawa, K., and Ozaki, Y., Chem. Mater., 2006, vol. 18, no. 20, p. 4894.CrossRefGoogle Scholar
  93. 93.
    Gentry, S.T. and Bezpalko, M.W., J. Phys. Chem. C, 2010, vol. 114, no. 15, p. 6989.CrossRefGoogle Scholar
  94. 94.
    Wang, G.-L., Zhu, X.-Y., Dong, Y.-M., Jiao, H.-J., Wu, X.-M., and Li, Z.-J., Talanta, 2013, vol. 107, p. 146.CrossRefGoogle Scholar
  95. 95.
    Lu, C.-P., Lin, C.-T., Chang, C.-M., Wu, S.-H., and Lo, L.-C., J. Agric. Food Chem., 2011, vol. 59, no. 21, p. 11403.CrossRefGoogle Scholar
  96. 96.
    Kurihara, M., Muramatsu, M., Yamada, M., and Kitamura, N., Talanta, 2012, vol. 96, p. 180.CrossRefGoogle Scholar
  97. 97.
    Olenin, A.Yu. and Lisichkin, G.V., Russ. Chem. Rev., 2011, vol. 80, no. 7, p. 605.CrossRefGoogle Scholar
  98. 98.
    Qu, L.-L., Liu, Y.-Y., He, S.-H., Chen, J.-Q., Liang, Y., and Li, H.-T., Biosens. Bioelectron., 2016, vol. 77, p. 292.CrossRefGoogle Scholar
  99. 99.
    He, Y., Liang, Y., and Yu, H., ACS Comb. Sci., 2015, vol. 17, no. 7, p. 409.CrossRefGoogle Scholar
  100. 100.
    Lu, L.-F., Li, Y.-Y., Zhang, M., and Shi, G., Analyst, 2015, vol. 140, no. 10, p. 3642.CrossRefGoogle Scholar
  101. 101.
    Tan, K., Yang, G., Chen, H., Shen, P., Huang, Y., and Xia, Y., Biosens. Bioelectron., 2014, vol. 59, p. 227.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Federal Research and Clinical Center of Critical Care Medicine and RehabilitationMoscowRussia

Personalised recommendations