Zinc oxide nanoparticles-based electrochemical sensor for the detection of nitrate ions in water with a low detection limit—a chemometric approach

Abstract

We report for the first time a cyclic voltammetric nitrate sensor with a low detection limit based on the immobilization of zinc oxide nanoparticles on the surface of the platinum working electrode using chitosan membrane. Cyclic voltammetric data demonstrated that zinc oxide nanoparticles can electrochemically reduce nitrate ions to ammonium ions with high conductivity. In order to estimate electroanalytical parameters for each of the nitrate concentrations, Gaussian and Lorentzian curve fitting algorithms were performed on cyclic voltammetric data. Among them, the best analytical performance results were obtained with Gaussian calibration linear model. The zinc oxide modified platinum electrode showed a linear response to nitrate ions over a concentration range from 0.1 to 2.0 mM with a low detection limit and high sensitivity of 10 nM and 39.91 μA/cm2 mM, respectively. The nitrate ion concentrations in drinking water samples were determined using Gaussian calibration linear model and the predicted, added nitrate ion concentration values showed good correlation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Zhad, H.R.L.Z. and Lai, R.Y., Anal. Chim. Acta, 2015, vol. 892, p. 153.

    Article  Google Scholar 

  2. 2.

    Zhang, X.L., Wang, J.X., Wang, Z., and Wang, S.C., Sensors, 2005, vol. 5, p. 580.

    Article  Google Scholar 

  3. 3.

    Li, Y., Sun, J., Bian, C., Tong, J., and Xia, S., Micro Nano Lett., 2012, vol. 7, p. 1197.

    CAS  Article  Google Scholar 

  4. 4.

    Manea, F., Remes, A., Radovan, C., Pode, R., Picken, S., and Schoonman, J., Talanta, 2010, vol. 83, p. 66.

    CAS  Article  Google Scholar 

  5. 5.

    Mahmoudian, M.R., Alias, Y., Basirun, W.J., Woi, P.M., Sheini, F.J., Sookhakian, M., and Silakhori, M., J. Electroanal. Chem., 2015, vol. 751, p. 30.

    CAS  Article  Google Scholar 

  6. 6.

    Shariar, S.M. and Hinoue, T., Anal. Sci., 2010, vol. 26, p. 1173.

    CAS  Article  Google Scholar 

  7. 7.

    Stortini, A.M., Moretto, L.M., Mardegan, A., Ongaro, M., and Ugo, P., Sens. Actuators, B, 2015, vol. 207, p. 186.

    CAS  Article  Google Scholar 

  8. 8.

    Kim, D., Goldberg, I.B., and Judy, J.W., Sens. Actuators, B, 2009, vol. 135, p. 618.

    CAS  Article  Google Scholar 

  9. 9.

    Gutés, A., Carraro, C., and Maboudian, R., Electrochim. Acta, 2013, vol. 103, p. 38.

    Article  Google Scholar 

  10. 10.

    Hafezi, B. and Majidi, M.R., Anal. Methods, 2013, vol. 5, p. 3552.

    CAS  Article  Google Scholar 

  11. 11.

    Gross, A.J., Holmes, S., Dale, S.E.C., Smallwood, M.J., Green, S.J., Winlove, C.P., Benjamin, N., Winyard, P.G., and Marken, F., Talanta, 2015, vol. 131, p. 228.

    CAS  Article  Google Scholar 

  12. 12.

    Solanki, P.R., Kaushik, A., Agrawal, V.V., and Malhotra, B.D., NPG Asia Mater., 2011, vol. 3, p. 17.

    Article  Google Scholar 

  13. 13.

    Zhao, Z., Lei, W., Zhang, X., Wang, B., and Jiang, H., Sensors, 2010, vol. 10, p. 1216.

    CAS  Article  Google Scholar 

  14. 14.

    Sharp, M., Petersson, M., and Edstrom, K., J. Electroanal. Chem. Interfacial Electrochem., 1979, vol. 95, p. 123.

    CAS  Article  Google Scholar 

  15. 15.

    CH Instruments. http://www.chinstruments.com accessories.shtml. Accessed June 20, 2016.

  16. 16.

    Ardakani, M.M., Rajabi, H., Beitollahi, H., Mirjalili, B.B.F., Akbari, A., and Taghavinia, N., Int. J. Electrochem. Sci., 2010, vol. 5, p. 147.

    Google Scholar 

  17. 17.

    Nesakumar, N., Sethuraman, S., Krishnan, U.M., and Rayappan, J.B.B., Anal. Bioanal. Chem., 2015, vol. 16, p. 4863.

    Article  Google Scholar 

  18. 18.

    Graphene Science Handbook: Mechanical and Chemical Properties, Aliofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S., Mitura, S., and Gervasoni, J.L., Eds., Boca Raton: CRC, 2016, p. 151.

  19. 19.

    Cash, K.J. and Clark, H.A., Trends Mol. Med., 2010, vol. 16, p. 584.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Bosco Balaguru Rayappan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gumpu, M.B., Nesakumar, N., Ramachandra, B.L. et al. Zinc oxide nanoparticles-based electrochemical sensor for the detection of nitrate ions in water with a low detection limit—a chemometric approach. J Anal Chem 72, 316–326 (2017). https://doi.org/10.1134/S1061934817030078

Download citation

Keywords

  • nitrate
  • Gaussian function
  • Lorentzian function
  • ZnO
  • cyclic voltammetry
  • chemometrics