Skip to main content
Log in

Phenoxy-substituted boron subphthalocyanine as a ionophore of ion-selective electrodes

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Phenoxy-substituted boron subphthalocyanine was synthesized and studied as an ionophore of plasticized polyvinyl chloride membranes of ion-selective electrodes. The electrodes exhibit reversible response to dobutamine, demonstrating the cation function, as well as reversible response to the salicylate anion. The effects of concentration of the ionophore (0.2–5 wt %) and ionic components (sodium tetraphenylborate, TPhBNa, and tributylhexadecylphosphonium bromide, TBGDPBr), including ionic liquids (ILs), such as diphenylbutylethylphosphonium bis(triflyl)imide, diphenylbutylethylphosphonium hexafluorophosphate, and 1,3-dihexadecylimidazolium chloride, as well as plasticizers, such as ortho-nitrophenyloctyl ether and diethyl sebacate, on the electrochemical characteristics of membranes were studied. For the electrode containing 2% of the phenoxy-substituted boron subphthalocyanine in dobutamine and salicylate solutions, the slopes of the electrode function were 36 ± 1 mV/dec and–46 ± 3 mV/dec and the limits of detection (LODs) were 4 × 10–5 M and 3 × 10–4 M, respectively. The addition of an ionic liquid containing the diphenylbutylethylphosphonium cation and the bis(triflyl)imide and hexaflurophosphate anions to the membrane composition had no effect on the response of membrane electrodes to both dobutamine and salicylate. The use of phenoxy-substituted boron subphthalocyanine in an amount of 2% and the TPhBNa additive significantly improved sensor characteristics: the slope of the electrode function (S) for the dobutamine-selective electrode was (54 ± 1) mV/dec and LOD was 1 × 10–5 M. Dobutamine can be determined in the presence of dopamine, adrenalin, and glucose. Electrodes based on 2% phenoxy-substituted boron subphthalocyanine and 0.5% (C16H33)2ImCl, or TBGDPBr in salicylate solutions demonstrate the slope of the electrode function close to the theoretical one and a low limit of detection: S = (–59 ± 1) mV/dec, LOD = 2 × 10–5 M and S = (–57 ± 1) mV/dec, LOD = 4 × 10–5 M, respectively. The anti-Hofmeister selectivity of sensors was observed. The electrode based on phenoxy-substituted boron subphthalocyanine and (C16H33)2ImCl was used for the assay of acetylsalicylic acid in the drug Cardiomagnyl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malinowska, E., Gorski, L., and Meyerhoff, M., Anal. Chim. Acta, 2002, vol. 468, p. 133.

    Article  CAS  Google Scholar 

  2. Malinowska, E. and Meyerhoff, M., Anal. Chim. Acta, 1995, vol. 300, p. 33.

    Article  CAS  Google Scholar 

  3. Khorasani, J.H., Amini, M.K., Motaghi, H., Tangestaninejad, S., and Moghadam, M., Sens._Actuators, B, 2002, vol. 87, p. 448.

    Article  CAS  Google Scholar 

  4. Santos, E.M.G. and Araujo, A.N., Anal. Bioanal. Chem., 2006, vol. 384, p. 867.

    Article  CAS  Google Scholar 

  5. Amini, M.K., Shahrokhian, S., and Tangestaninejad, S., Anal. Chem., 1999, vol. 71, p. 2502.

    Article  CAS  Google Scholar 

  6. Mitchell-Koch, J.T., Pietrzak, M., Malinowska, E., and Meyerhoff, M., Electroanalysis, 2006, vol. 18, p. 551.

    Article  CAS  Google Scholar 

  7. Shvedene, N.V., Otkidach, K.N., Gumerov, M.R., Tarakanov, P.A., and Tomilova, L.G., J. Anal. Chem., 2015, vol. 70, no. 1, p. 72.

    Article  CAS  Google Scholar 

  8. Otkidach, K.N., Shvedene, N.V., Tarakanov, P.A., Tomilova, L.G., and Pletnev, I.V., Moscow Univ. Chem. Bull. (Engl. Transl.), 2016, vol. 71, no. 4, p. 270.

    Article  Google Scholar 

  9. Rzevskaia, A.V., Shvedene, N.V., and Pletnev, I.V., Talanta, 2012, vol. 102, p. 123.

    Article  Google Scholar 

  10. Shahrokhian, S. and Souri, A., Anal. Chim. Acta, 2004, vol. 518, p. 101.

    Article  CAS  Google Scholar 

  11. Prasad, R., Gupta, V.K., and Kumar, A., Anal. Chim. Acta, 2004, vol. 508, p. 61.

    Article  CAS  Google Scholar 

  12. Hassan, S.S.M., Mahmoud, W.H., Elmosallamy, M.A.F., and Almarzooqi, M.H., J. Pharm. Biomed. Anal., 2005, vol. 39, p. 315.

    Article  CAS  Google Scholar 

  13. Shahrokhian, S., Hamzehloei, A., and Bagherzadeh, M., Anal. Chem., 2002, vol. 74, p. 3312.

    Article  CAS  Google Scholar 

  14. Messick, M., Krishan, S., Hulvey, M., and Steinle, E., Anal. Chim. Acta, 2005, vol. 539, p. 223.

    Article  CAS  Google Scholar 

  15. Malinowska, E., Niedziolka, J., Rozniecka, E., and Meyerhoff, M., J. Electroanal. Chem., 2001, vol. 514, p. 109.

    Article  CAS  Google Scholar 

  16. Leyzerovich, N., Shvedene, N., Blikova, Yu., Tomilova, L., and Pletnev, I., Electroanalysis, 2001, vol. 13, p. 246.

    Article  CAS  Google Scholar 

  17. Blikova, Yu.N., Leizerovich, N.N., Pasekova, N.A., and Shvedene, N.V., Vestn. Mosk. Univ., Ser. 2: Khim., 2000, vol. 41, no. 4, p. 259.

    CAS  Google Scholar 

  18. Shvedene, N.V., Leizerovich, N.N., Kostalyndina, E.V., Koval’, Ya.N., and Pletnev, I.V., Vestn. Mosk. Univ., Ser. 2: Khim., 2000, vol. 41, no. 1, p. 34.

    CAS  Google Scholar 

  19. Bakker, E., Malinowska, E., Schiller, R.D., and Meyerhoff, M.E., Talanta, 1994, vol. 41, no. 6, p. 881.

    Article  CAS  Google Scholar 

  20. Gourishetty, R., Crabtree, A.M., Sanderson, W.M., and Johnson, R.D., Anal. Bioanal. Chem., 2011, vol. 400, p. 3025.

    Article  CAS  Google Scholar 

  21. Shvedene, N.V., Chernyshev, D.V., Gromova, Yu.P., Nemilova, M.Yu., and Pletnev, I.V., J. Anal. Chem., 2010, vol. 65, no. 8, p. 861.

    Article  CAS  Google Scholar 

  22. Claessens, C.G., Gonzalea-Rodrigez, D., and Torres, T., Chem. Rev., 2002, vol. 102, p. 835.

    Article  CAS  Google Scholar 

  23. Liang, Z., Gan, F., Sub, Z., Yang, X., Ding, L., and Wang, Z., Opt. Mater., 2000, vol. 14, p. 13.

    Article  CAS  Google Scholar 

  24. Claessens, C.G., Gonzalez-Rodriguez, D., Rodriguez-Morgade, M.S., Medina, A., and Torres, T., Chem. Rev., 2014, vol. 114, p. 2192.

    Article  CAS  Google Scholar 

  25. Tolbin, A.Yu. and Tomilova, L.G., Russ. Chem. Rev., 2011, vol. 80, no. 6, p. 531.

    Article  CAS  Google Scholar 

  26. Dubinina, T.V., Zakirova, G.G., Osipova, M.M., Petrusevich, E.F., and Tomilova, L.G., Russ. Chem. Bull., 2015, no. 9, p. 2253.

    Article  Google Scholar 

  27. Cammann, K., Das Arbeiten mit Ionenselektiven Elektroden (Working with Ion-Selective Electrodes), Heidelberg Springer, 1977.

    Book  Google Scholar 

  28. Umezawa, Y., Buhlmann, Ph., Umezawa, K., Tohda, K., and Amemiya, S.H., Pure Appl. Chem., 2000, vol. 72, p. 1851.

    Article  CAS  Google Scholar 

  29. Nazarova, I.A., Starushko, N.V., Otkidach, K.N., Shvedene, N.V., Formanovskii, A.A., and Pletnev, I.V., Vestn. Mosk. Univ., Ser. 2: Khim., 2001, vol. 42, no. 1, p. 33.

    CAS  Google Scholar 

  30. Shvedene, N.V., Nazarova, I.A., Formanovsky, A.A., Otkidach, D.S., and Pletnev, I.V., Electrochem. Commun., 2002, vol. 4, p. 978.

    Article  CAS  Google Scholar 

  31. Shahrokhian, S., Taghani, A., Hamzehloe, A., and Resa Mousavi, S., Talanta, 2004, vol. 63, no. 2, p. 371.

    Article  CAS  Google Scholar 

  32. Claessens, C.G., Gonzael-Rodriguez, D., Rodriguez-Morgade, M.S., Medina, A., and Torres, T., Chem. Rev., 2014, vol. 114, p. 2192.

    Article  CAS  Google Scholar 

  33. Hofmeister, F., Arch. Exp. Pathol. Pharmacol., 1888, vol. 24, p. 247.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Shvedene.

Additional information

Original Russian Text © N.V. Shvedene, K.N. Otkidach, E.E. Ondar, M.M. Osipova, T.V. Dubinina, L.G. Tomilova, I.V. Pletnev, 2017, published in Zhurnal Analiticheskoi Khimii, 2017, Vol. 72, No. 1, pp. 78–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvedene, N.V., Otkidach, K.N., Ondar, E.E. et al. Phenoxy-substituted boron subphthalocyanine as a ionophore of ion-selective electrodes. J Anal Chem 72, 95–104 (2017). https://doi.org/10.1134/S1061934817010117

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934817010117

Keywords

Navigation