Advertisement

Journal of Analytical Chemistry

, Volume 71, Issue 12, pp 1204–1214 | Cite as

Chromatographic and chromatospectral characteristic of dicarboxylic acid monoesters

  • I. G. ZenkevichEmail author
  • L. N. Fakhretdinova
Articles

Abstract

Monoalkyl esters of benzene-1,2-dicarboxylic (phthalic) acid have not been reliably characterized by analytical parameters for their chromatographic and chromatospectral identification. Mass spectra of a series of monoalkyl phthalates (R = C1–C8) are discussed; their gas chromatographic retention indices on the RTX-5 polydimethylsiloxane stationary phase (5% phenyl groups) are determined. A linear dependence of indices on the number of carbon atoms in n-alkyl fragments of molecules and a correlation between the indices of any monoalkyl phthalates and corresponding diesters were used for the control of the data obtained. Using the last correlation, we found that most part of index values of mono (2-ethylhexyl) phthalate given in literature is wrong and, therefore, the results of identification of this compound in various samples must be revised. It was found that simplest monoalkyl phthalates are unstable during gas chromatographic separation, which may result in distortions of their mass spectra. To compare with monoalkyl phthalates, a similar series of monoesters of (Z)-butenedioic (maleic) acid was characterized. Retention indices of monoalkyl phthalates in reversed phase HPLC were determined and discussed.

Keywords

phthalic acid maleic acid monoalkyl esters gas chromatographic retention indices reversed phase HPLC mass spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The NIST 14 Mass Spectral Library (NIST14/2014/ EPA/NIH). http://webbook.nist.gov. Cited April, 2016.Google Scholar
  2. 2.
    Krylov, V.A., Volkova, V.V., and Zaitsev, S.D., Analitika Kontrol’, 2013, vol. 17, no. 3, p. 295.Google Scholar
  3. 3.
    Krylov, V.A. and Volkova, V.V., Vestn. Nizhegorod. Univ., 2014, nos. 1–2, p. 210.Google Scholar
  4. 4.
    Cao, X.-L., Compr. Rev. Food Sci. Food Saf., 2010, vol. 9, no. 1, p. 21.CrossRefGoogle Scholar
  5. 5.
    Khalil, M.M.H., Gomaa, A.M., Sebaei, A.S., and Moustapha, N.M., J. Essent. Oil-Bear. Plants, 2014, vol. 16, no. 6, p. 1343.CrossRefGoogle Scholar
  6. 6.
    Di Bella, G., Saitta, M., Pellegrino, M., Salvo, F., and Dugo, G., J. Agric. Food Chem., 1999, vol. 47, no. 3, p. 1009.CrossRefGoogle Scholar
  7. 7.
    Manayi, A., Kurepaz-Mahmoodabadi, M., Gohari, A.R., Ajani, Y., and Saeidnia, S., Daru, J. Pharm. Sci., 2014, vol. 28, p. 6.Google Scholar
  8. 8.
    Niino, T., Ishibashi, T., Itho, T., Sakai, S., Ishiwata, H., Yamada, T., and Onodera, S., J. Health Sci., 2001, vol. 47, no. 3, p. 318.CrossRefGoogle Scholar
  9. 9.
    Yoshikawa, K., Tanaka, A., Yamaha, T., and Kurata, H., Food Chem. Toxicol., 1983, vol. 21, no. 2, p. 221.CrossRefGoogle Scholar
  10. 10.
    Kluwe, W.M., Environ. Health Perspect., 1986, vol. 65, p. 271.Google Scholar
  11. 11.
    Hara, H., Stewart, G.R., and Mohn, W.W., Appl. Environ. Microbiol., 2010, vol. 76, no. 5, p. 1516.CrossRefGoogle Scholar
  12. 12.
    Metabolites of Phthalates and Phthalate Alternatives, Method no. 6306.04, Lab. Proc. Manual. Nat. Center for Environ. Health, 2013.Google Scholar
  13. 13.
    Zenkevich, I.G. and Fakhretdinova, L.N., Analitika Kontrol’, 2015, vol. 19, no. 2, p. 175.Google Scholar
  14. 14.
    Zenkevich, I.G., Rotaru, K.I., Selivanov, S.I., and Kostikov, R.R., Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim., 2015, vol. 2, no. 4, p. 386.Google Scholar
  15. 15.
    Sukhikh, A.S., Kuznetsov, P.V., and Teslov, L.S., Khim. Rastit. Syr’ya, 2014, no. 3, p. 159.Google Scholar
  16. 16.
    Bagavathi, P.E. and Ramasamy, N., Pharmacogn. Res., 2012, vol. 14, p. 11.Google Scholar
  17. 17.
    Syeda, F.A., Habib-ur-Rahman, Choudahry, M.I., and Atta-ur-Rahman, Int. J. Genetics Mol. Biol., 2011, vol. 3, p. 95.Google Scholar
  18. 18.
    Kawakami, T., Isama, K., and Matsuoka, A., J. Environ. Sci. Health, 2011, vol. 46, p. 855.CrossRefGoogle Scholar
  19. 19.
    Sadaskava, C.T., Sharanappa, P., Remashree, A.B., Raghu, A.V., Udayan, P.S., and Balachandran, I., Adv. Biol. Res., 2010, vol. 4, no. 6, p. 301.Google Scholar
  20. 20.
    Chen, H., Yang, Y., Xue, J., Wei, J., Zhang, Z., and Chen, H., Molecules, 2011, vol. 16, p. 4884.CrossRefGoogle Scholar
  21. 21.
    Bai, X., Chen, Y., Chen, W., Lei, H., and Shi, G., Mar. Drugs, 2011, vol. 9, p. 863.CrossRefGoogle Scholar
  22. 22.
    Adebayo, M.A., Lawal, O.A., Sikiru, A.A., Ogunwande, I.A., and Avoseh, O.N., Am. J. Plant Sci., 2014, vol. 5, p. 2448.CrossRefGoogle Scholar
  23. 23.
    Zhang, Z., Han, X.-M., Wei, J.-H., Xue, J., Yang, Y., Liang, L., Li, X.-J., Guo, Q.-M., Xu, Y.-H., and Gao, Z.-H., J. Braz. Chem. Soc., 2014, vol. 25, no. 1, p. 20.Google Scholar
  24. 24.
    Nadaf, M., Halimi, M., and Morfazavi, M., Middle East J. Sci. Res., 2012, vol. 11, no. 2, p. 221.Google Scholar
  25. 25.
    Kim, N.S. and Lee, D.-S., Anal. Sci., 2001, vol. 17, p. a383.Google Scholar
  26. 26.
    Joshi, S., Mishra, D., Bisht, G., and Khetwalk, S., EXCLI J., 2011, vol. 10, p. 274.Google Scholar
  27. 27.
    Zenkevich, I.G., Anal. Bioanal. Chem., 2013, vol. 405, p. 3075.CrossRefGoogle Scholar
  28. 28.
    Zenkevich, I.G. and Fakhretdinova, L.N., Analitika Kontrol’, 2015, vol. 19, no. 1, p. 52.Google Scholar
  29. 29.
    Zenkevich, I.G. and Fakhretdinova, L.N., J. Anal. Chem., 2016, vol. 71, no. 4, p. 402.CrossRefGoogle Scholar
  30. 30.
    Zenkevich, I.G., J. Anal. Chem., 2010, vol. 65, no. 3, p. 267.CrossRefGoogle Scholar
  31. 31.
    Heberger, K. and Zenkevich, I.G., J. Chromatogr. A, 2010, vol. 1217, p. 2895.CrossRefGoogle Scholar
  32. 32.
    Lebedev, A.T., Mass-spektrometriya v organicheskoi khimii (Mass Spectrometry in Organic Chemistry), Moscow: Tekhnosfera, 2015, 2nd ed.Google Scholar
  33. 33.
    Practical Gas Chromatography: A Comprehensive Reference, Dettmer-Wilde, K. and Engewald, W., Eds., Heidelberg: Springer, 2014.Google Scholar
  34. 34.
    Kornilova, T.A., Ukolov, A.I., Kostikov, R.R., and Zenkevich, I.G., Russ. J. Gen. Chem., 2012, vol. 82, no. 10, p. 1675.CrossRefGoogle Scholar
  35. 35.
    Kornilova, T.A., Ukolov, A.I., Kostikov, R.R., and Zenkevich, I.G., Rapid Commun. Mass Spectrom., 2013, vol. 27, p. 461.CrossRefGoogle Scholar
  36. 36.
    Ritchie, P.D., J. Chem. Soc., 1935, p. 1054.Google Scholar
  37. 37.
    Leo, A., J. Chem. Soc., Perkin Trans. 2, 1983, p. 825.Google Scholar
  38. 38.
    Lu, P.-Y. and Metcalf, R., Environ. Health Perspect., 1975, vol. 10, p. 269.CrossRefGoogle Scholar
  39. 39.
    Zenkevich, I.G., Zh. Prikl. Khim., 1995, vol. 68, no. 8, p. 1321.Google Scholar
  40. 40.
    Zenkevich, I.G. and Guschina, S.V., Russ. J. Phys. Chem. A, 2011, vol. 85, no. 9, p. 1641.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of ChemistrySt. Petersburg State UniversitySt.-PetersburgRussia

Personalised recommendations