Skip to main content
Log in

Simple and low-cost electrochemical sensor based on nickel nanoparticles for the determination of cabergoline

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Cabergoline (CAB) is an ergot alkaloid derivative with dopamine agonist activity. In this work for the first time the electrocatalytic oxidation of CAB was carried out with nickel nanoparticles-modified carbon paste electrode using cyclic voltammetry, chronoamperometry, chronocoulometry and amperometry methods. At first, nickel nanoparticles were synthesized by non-aqueous polyol method and these nanoparticles were mixed with graphite powder to form modified carbon paste electrode. The resulting modified electrode was characterized by scanning electron microscope images. In the presence of 0.1 M NaOH a good redox behavior of the Ni(III)/Ni(II) couple at the surface of the electrode can be observed. CAB was successfully oxidized at the surface of the modified electrode. The electrocatalytic oxidation peak current of this drug was linearly dependent on its concentration. The proposed sensor exhibited a high sensitivity and was successfully applied for the determination of CAB in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabergoline. http:/en.wikipedia.org/wiki/Cabergoline. Cited April 14, 2015.

  2. Onal, A., Sagirli, O., and Sensoy, D., Chromatographia, 2007, vol. 65, nos. 9–10, p. 561.

    Article  CAS  Google Scholar 

  3. Allievi, C. and Dostert, P., Rapid, Commun. Mass Spectrom., 1998, vol. 12, no. 1, p. 9.

    Article  Google Scholar 

  4. Kimball, B.A., DeLiberto, T.J., and Johnston, J., Anal. Chem., 2001, vol. 73, no. 20, p. 4972.

    Article  CAS  Google Scholar 

  5. Schapira, A.H.V., J. Neurol., Neurosurg. Psychiatry, 2005, vol. 76, no. 11, p. 1472.

    Article  CAS  Google Scholar 

  6. Karlsen, K.H., Tandberg, E., Årsland, D., and Larsen, J.P., J. Neurol., Neurosurg. Psychiatry, 2000, vol. 69, p. 584.

    Article  CAS  Google Scholar 

  7. Chiueh, C.C., Krishna, G., Tulsi, P., Obata, T., Lang, K., and Huang, S.J., Free Radical Biol. Med., 1992, vol. 13, p. 581.

    Article  CAS  Google Scholar 

  8. Mena, M.A., Casarejos, M.J., Carazo, A., Paino, C.L., and De, J.G., J. Neural Transm., 1997, vol. 104, p. 317.

    Article  CAS  Google Scholar 

  9. Asanuma, M., Miyazaki, I., and Ogawa, N., Neurotoxic. Res., 2003, vol. 5, p. 165.

    Article  Google Scholar 

  10. Nigovic, B. and Simunic, B., J. Pharm. Biomed. Anal., 2003, vol. 31, p. 169.

    Article  CAS  Google Scholar 

  11. Uslu, B. and Ozkan, S.A., Electrochim. Acta, 2004, vol. 49, p. 4321.

    Article  CAS  Google Scholar 

  12. Parvin, M.H., Electrochem. Commun., 2011, vol. 13, p. 366.

    Article  CAS  Google Scholar 

  13. Svancara, I., Vytras, K., Kalcher, K., Walcarius, A., and Wang, J., Electroanalysis, 2009, vol. 21, p. 7.

    Article  CAS  Google Scholar 

  14. Mahmoud, K.A., Hrapovic, S., and Luong, J.H., ACS Nano, 2008, vol. 2, p. 1051.

    Article  CAS  Google Scholar 

  15. Streeter, I., Baron, R., and Compton, R.G., J. Phys. Chem. C, 2007, vol. 111, p. 1708.

    Google Scholar 

  16. Zhang, Y., Suryanarayanan, V., Nakazawa, I., Yoshihara, S., and Shirakashi, T., Electrochim. Acta, 2004, vol. 49, p. 5235.

    Article  CAS  Google Scholar 

  17. Hao, N., Li, H., Zhang, L., Zhao, X., Xu, D., and Chen, H.Y., J. Electroanal. Chem., 2011, vol. 656, p. 50.

    Article  CAS  Google Scholar 

  18. Penner, R.M. and Martin, C.R., Anal. Chem., 1987, vol. 59, p. 2625.

    Article  CAS  Google Scholar 

  19. Cassidy, J., Ghoroghchian, J., Sarfarazi, F., Smith, J.J., and Pons, S., Electrochim. Acta, 1986, vol. 31, p. 629.

    Article  CAS  Google Scholar 

  20. Meyer, H., Drewer, H., Gruendig, B., Cammann, K., Kakerow, R., Manoli, Y., and Rospert, M., Anal. Chem., 1995, vol. 67, p. 1164.

    Article  CAS  Google Scholar 

  21. Huang, J., Liu, Y., Hou, H., and You, T., Biosens. Bioelectron., 2008, vol. 24, p. 632.

    Article  CAS  Google Scholar 

  22. An, K., Lee, N., Park, J., Kim, S.C., Hwang, Y., Park, J.G., and Hyeon, T., J. Am. Chem. Soc., 2006, vol. 128, p. 9753.

    Article  CAS  Google Scholar 

  23. Hu, J., Wen, Z., Wang, Q., Yao, X., Zhang, Q., Zhou, J., and Li, J., J. Phys. Chem. B, 2006, vol. 110, p. 24305.

    Article  CAS  Google Scholar 

  24. Li, W.Y., Xu, L.N., and Chen, J., Adv. Funct. Mater., 2005, vol. 15, p. 851.

    Article  CAS  Google Scholar 

  25. Ojani, R., Raoof, J.B., and Zamani, S., Electroanalysis, 2009, vol. 21, p. 2634.

    Article  CAS  Google Scholar 

  26. Ojani, R., Raoof, J.B., and Zamani, S., Bioelectrochemistry, 2012, vol. 85, p. 44.

    Article  CAS  Google Scholar 

  27. Ojani, R., Raoof, J.B., and Zamani, S., Talanta, 2010, vol. 81, p. 1522.

    Article  CAS  Google Scholar 

  28. Fathi, S., Russ. J. Electrochem., 2014, vol. 50, p. 468.

    Article  CAS  Google Scholar 

  29. Roselina, N., Azizan, A., and Lockman, Z., Sains Malays., 2012, vol. 41, p. 1037.

    CAS  Google Scholar 

  30. Pham, M.T., Maitz, M.F., Richter, E., Reuther, H., Prokert, F., and Mucklich, A., J. Electroanal. Chem., 2004, vol. 572, p. 185.

    Article  CAS  Google Scholar 

  31. Mirceski, V. and Gulaboski, R., Electroanalysis, 2001, vol. 13, p. 1326.

    Article  CAS  Google Scholar 

  32. Mirceski, V. and Gulaboski, R., Electroanalysis, 2003, vol. 7, p. 157.

    CAS  Google Scholar 

  33. Priente, F., Lorenzo, E., Tobalina, F., and Abruna, H.D., Anal. Chem., 1995, vol. 67, p. 3936.

    Article  Google Scholar 

  34. Bard, A.J. and Faulkner, L.R., Electrochemical Methods, New York: Wiley, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahla Fathi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, S., Omrani, S.G. & Zamani, S. Simple and low-cost electrochemical sensor based on nickel nanoparticles for the determination of cabergoline. J Anal Chem 71, 269–275 (2016). https://doi.org/10.1134/S1061934816030126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934816030126

Keywords

Navigation