Skip to main content
Log in

A mass spectrometric study and computer modeling of noncovalent interactions of cytosine with polyethylene glycol oligomers

  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Data on intermolecular noncovalent interactions of nitrogen base components of nucleic acid with organic polyethers are of interest both for fundamental molecular biophysics and for applications in the production of pharmaceutical organic nanoparticles. In the present work, systems composed of pyrimidine nitrogen base cytosine (Cyt) or its methyl derivatives and polyethylene glycol PEG-400 oligomers M n have been examined by electrospray ionization (ESI) and fast atom bombardment mass spectrometry. Detection of a set of associates of the M n · Cyt · H+ type (n = 3–17) in ESI mass spectra evidences the formation of protonated complexes of the base with oligomers of different chain lengths in all of the studied systems. Computer modeling by molecular dynamics gave answers to the questions concerning the stability and structure of these complexes under different conditions. It has been shown that M n · Cyt · H+ clusters in the gas phase (vacuum) adopt a compact structure with a quasi-cyclic or quasi-helical self-organization of the polymer chain around the protonated base. It has been found that the compact structure of the M8 · Cyt · H+ complex characteristic for its state in the gas phase is preserved in a liquid medium of methanol (used as a solvent in ESI). The results of simulation of the evolution of a methanol droplet in vacuum, which mimics the droplet disintegration under ESI conditions, have shown that the M8 · Cyt · H+ complex initially present in the droplet does not disintegrate in the course of droplet evaporation. After the completion of desolvation, the complex returns to the conformation characteristic for the gas phase. Thus, the evidence has been found confirming that the M8 · Cyt · H+ clusters recorded in ESI mass spectra adequately reflect the presence of corresponding noncovalent complexes in the analyzed liquid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wyttenbach, Th. and Bowers, M.T., Ann. Rev. Phys. Chem., 2007, vol. 58, no. 1, p. 511.

    Article  CAS  Google Scholar 

  2. Loo, J.A., Int. J. Mass Spectrom. Ion Processes, 2000, vol. 200, nos. 1–3, p. 175.

    Article  CAS  Google Scholar 

  3. McCullough, B.J. and Gaskell, S.J., Comb. Chem. High Throughput Screening, 2009, vol. 12, no. 2, p. 203.

    Article  CAS  Google Scholar 

  4. Schalley, C.A. and Springer, A., Mass Spectrometry of Non-Covalent Complexes: Supramolecular Chemistry in the Gas Phase, Hoboken: Wiley, 2009.

    Google Scholar 

  5. Kaltashov, I.A. and Eyles, S.J., Mass spectrometry in Biophysics: Conformation and Dynamics of Biomolecules, Hoboken: Wiley, 2005.

    Book  Google Scholar 

  6. Zhong, W.-H., Li, B., Maguire, R.G., Dang, V.T., Shatkin, J.A., Gross, G.M., and Richey, M.C., in Nanoscience and Nanomaterials: Synthesis, Manufacturing, and Industry Impacts, Lancaster: DEStech Publications, 2012, p. 303.

    Google Scholar 

  7. Suzdalev, I.P., Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physics and Chemistry of Nanoclusters, Nanostructures, and Nanomaterials), Moscow: KomKniga, 2006.

    Google Scholar 

  8. Zobnina, V.G., Kosevich, M.V., Chagovets, V.V., and Boryak, O.A., in Nanomaterials Imaging Techniques, Surface Studies, and Applications, Fesenko, O., Yatsenko, L., and Brodin, M., Eds., London: Springer, 2013, p. 327.

  9. Zobnina, V.G., Kosevich, M.V., Chagovets, V.V., Boryak, O.A., Vékey, K., Gömöry, Á., and Kulyk, A.N., Rapid Commun. Mass Spectrom., 2012, vol. 26, no. 5, p. 532.

    Article  CAS  Google Scholar 

  10. Kosevich, M.V., Zobnina, V.G., Boryak, O.A., Chagovets, V.V., and Zinchenko, A.V., Probl. Kriobiol., 2012, vol. 22, no. 3, p. 327.

    Google Scholar 

  11. Zobnina, V.G., Kosevich, M.V., Boryak, O.A., and Chagovets, V.V., Vestnik Sevastopolsk. Nats. Tech. Univ., Ser.: Fiz. Biol. Syst. Mol., 2011, no. 113, p. 88.

    Google Scholar 

  12. Zobnina, V.G., Boryak, O.A., Kosevich, M.V., Chagovets, V.V., Orlov, V.V., Snegir’, V.V., Pokrovskii, V.A., Zhivotova, E.N., Zinchenko, A.V., and Gomory, A., Visn. Kharkovsk. Nats. Univ. Biofiz. Visn., 2009, no. 1, p. 103.

    Google Scholar 

  13. Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications, Cole, R., Ed., Hoboken: Wiley, 2010, 2nd ed.

  14. Veronese, F.M. and Pasut, G., Drug Discovery Today, 2005, vol. 10, no. 21, p. 1451.

    Article  CAS  Google Scholar 

  15. Van Vlerken, L.E., Vyas, T.K., and Amiji, M.M., Pharm. Res., 2007, vol. 24, no. 8, p. 1405.

    Article  Google Scholar 

  16. Kleemann, E., Neu, M., Jekel, N., Fink, L., Schmehl, T., Gessler, T., Seeger, W., and Kissel, T., J. Controlled Release, 2005, vol. 109, nos. 1–3, p. 299.

    Article  CAS  Google Scholar 

  17. Harris, J.M. and Zalipsky, S., Poly(Ethylene Glycol): Chemistry and Biological Applications, Washington, DC: Am. Chem. Soc., 1997.

    Book  Google Scholar 

  18. Wyttenbach, T., Helden, G., and Bowers, M.T., Int. J. Mass Spectrom. Ion Processes, 1997, vols. 165–166, p. 377.

    Article  Google Scholar 

  19. Gidden, J., Wyttenbach, T., Jackson, A.T., Scrivens, J.H., and Bowers, M.T., J. Am. Chem. Soc., 2000, vol. 122, no. 19, p. 4692.

    Article  CAS  Google Scholar 

  20. Jackson, A.T., Scrivens, J.H., Williams, J.P., Baker, E.S., Gidden, J., and Bowers, M.T., Int. J. Mass Spectrom. Ion Processes, 2004, vol. 238, no. 3, p. 287.

    Article  CAS  Google Scholar 

  21. Belan, V.I., Belous, L.F., Grechnev, G.E., Zarudnev, E.S., Zobnina, V.G., Ivanov, A.Yu., Karachevtsev, M.V., Kosevich, M.V., Rubin, Yu.V., Slavin, V.V., Smirnov, S.N., Stepanian, S.G., and Chagovets, V.V., in Parallel and Distributed Computing Systems: Collection of Scientific Papers, Cherepynets, V., Ed., Kharkov: ISMA House, 2013, p. 32

  22. Znamenskiy, V., Marginean, I., and Vertes, A., J. Phys. Chem. A, 2003, vol. 107, no. 38, p. 7406.

    Article  CAS  Google Scholar 

  23. Konermann, L., Ahadi, E., Rodriguez, A.D., and Vahidi, S., Anal. Chem., 2013, vol. 85, no. 1, p. 2.

    Article  CAS  Google Scholar 

  24. Ahadi, E. and Konermann, L., J. Am. Chem. Soc., 2011, vol. 133, no. 24, p. 9354.

    Article  CAS  Google Scholar 

  25. Daub, C.D. and Cann, N.M., Anal. Chem., 2011, vol. 83, no. 22, p. 8372.

    Article  CAS  Google Scholar 

  26. Ahadi, E. and Konermann, L., J. Phys. Chem. B, 2012, vol. 116, no. 1, p. 104.

    Article  CAS  Google Scholar 

  27. Skurat, V.E., Itogi Nauki Tekh., Ser.: Radiats. Khim. Fotokhim., vol. 5: Poluchenie i issledovanie ionov neletuchikh organicheskikh veshchestv v gazovoi faze i v vakuume (Preparation and Study of Ions of Nonvolatile Organic Compounds in the Gas Phase and in Vacuum), Moscow: VINITI, 1988.

    Google Scholar 

  28. Kebarle, P. and Verkerk, U.H., Mass Spectrom. Rev., 2009, vol. 28, no. 6, p. 898.

    Article  CAS  Google Scholar 

  29. Breuker, K. and McLafferty, F.W., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 47, p. 18145.

    Article  CAS  Google Scholar 

  30. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K., J. Comput. Chem., 2005, vol. 26, no. 16, p. 1781.

    Article  CAS  Google Scholar 

  31. Brooks, B.R., Brooks, C.L.III., Mackerell, A.D., Jr., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., and Karplus, M., J. Comput. Chem., 2009, vol. 30, no. 10, p. 1545.

    Article  CAS  Google Scholar 

  32. ChemCraft. http://www.chemcraftprog.com. Cited March 27, 2014.

  33. Visual Molecular Dynamics (VMD). http://www.ks.uiuc.edu/Research/vmd/. Cited March 27, 2014.

  34. GRID-cluster of the Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine. http://www.ilt.kharkov.ua/cluster/. Cited March 27, 2014.

  35. Montaudo, G. and Lattimer, R.P., Mass Spectrometry of Polymers, Boca Raton: CRC Press, 2002.

    Google Scholar 

  36. Zaikin, V.G., Mass-spektrometriya sinteticheskikh polimerov (Mass Spectrometry of Synthetic Polymers), Moscow: All-Russ. Mass-Spectrom. Soc., 2009.

    Google Scholar 

  37. Varray, S., Aubagnac, J.-L., Lamaty, F., Lazaro, R., Martinez, J., and Enjalbal, C., Analysis, 2000, vol. 28, no. 4, p. 263.

    Article  CAS  Google Scholar 

  38. Kosevich, M.V., Zobnina, V.G., Zhivotova, E.N., Shmigol’, I.V., Boryak, O.A., Chagovets, V.V., Chekanova, V.V., Zinchenko, A.V., Pokrovskii, V.A., and Gomory, A., Mass-Spektrometria, 2009, vol. 6, no. 1, p. 7.

    CAS  Google Scholar 

  39. Zobnina, V.G., Kosevich, M.V., Chagovets, V.V., Boryak, O.A., Kulik, A.N., and Gomory, A., MassSpektrometria, 2010, vol. 7, no. 3, p. 225.

    CAS  Google Scholar 

  40. Kosevich, M.V., Zobnina, V.G., Chagovets, V.V., and Boryak, O.A., Rapid Commun. Mass Spectrom., 2011, vol. 25, no. 6, p. 713.

    Article  CAS  Google Scholar 

  41. Zobnina, V.G., Kosevich, M.V., Boryak, O.A., Orlov, V.V., Gomory, A., and Vekey, K., in Materialy I Mezhdunar. nauchno-tekhnich. konf. FizKhimBio-2012 (Proc. 1st Int. Sci.-Tech. Conf. PhysKhimBio-2012), Sevastopol, 2012, p. 67.

    Google Scholar 

  42. NIST Chemistry WebBook, NIST Standard Ref. Database no. 69, Linstrom, P.J. and Mallard, W.G., Eds., Natl. Inst. Standards Technol., 2014. http://webbook.nist.gov/chemistry/. Cited March 27, 2014.

  43. Hunter, E.P. and Lias, S.G., J. Phys. Chem. Ref. Data, 1998, vol. 27, no. 3, p. 413.

    Article  CAS  Google Scholar 

  44. Lin, H.Y., Rockwood, A., Munson, M.S.B., and Ridge, D.P., Anal. Chem., 1993, vol. 65, no. 15, p. 2119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Zobnina.

Additional information

Original Russian Text © V.G. Zobnina, V.V. Chagovets, O.A. Boryak, M.V. Kosevich, 2014, published in Mass-spektrometriya, 2014, Vol. 11, No. 2, pp. 97–106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobnina, V.G., Chagovets, V.V., Boryak, O.A. et al. A mass spectrometric study and computer modeling of noncovalent interactions of cytosine with polyethylene glycol oligomers. J Anal Chem 70, 1533–1541 (2015). https://doi.org/10.1134/S1061934815130110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934815130110

Keywords

Navigation