Skip to main content
Log in

The use of thermal desorption in the speciation analysis of mercury in soil, sediments and tailings

  • Review
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The thermal desorption of mercury from the solid phase coupled with atomic absorption spectroscopy (AAS) is useful and simple method of mercury speciation analysis of the environmental samples. The present work is focused on the mercury desorption use for soil, sediments and tailings study. The extensive experimental material of many authors was summarized in this work with regard to a critical confrontation of approaches used in data interpretation. The main emphasis was put on the most frequently observed forms as Hg0, Hg2+ bound to mineral or organic surfaces, Hg2+ bound to the most common ligands and HgS. A comprehensive conception of the usage possibilities of this method as suitable analytical tool for speciation analysis was the main aim. This work includes not only the preparation of calibration materials and the description of their desorption behaviour but also summarizes the interpretations of mercury release curves of real samples and becomes an effective tool for their evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seal, R.R. and Foley, N.K., Progress on geoenvironmental models for selected mineral deposit types. Lincoln: University of Nebraska, 2002, p. 161.

    Google Scholar 

  2. Gabriel, M.C. and Williamson, D.G., Environ. Geochem. Health, 2004, vol. 26, p. 421.

    Article  CAS  Google Scholar 

  3. Schlüter, K., Environ. Geol., 2000, vol. 39, p. 3.

    Article  Google Scholar 

  4. Kucharski, R., Zielonka, U., Sas-Nowosielska, A., Kuperberg, J.M., Worsztynowicz, A., and Szdzuj, J., Environ. Monit. Assess, 2005, vol. 104, p. 341.

    Article  CAS  Google Scholar 

  5. Shuvaeva, O.V., Gustaytis, M.A., and Anoshin, G.N., Analyt. Chim. Acta, 2008, vol. 621, p. 148.

    Article  CAS  Google Scholar 

  6. Hinton, J. and Veiga, M., Mercury contaminated sites: A review of remedial solutions. National Institute for Minamata Disease, 2001, p. 1.

    Google Scholar 

  7. Huang, Y.T., Hseu, Z.Y., and Hsi, H.C., Chemosphere, 2011, vol. 84, p. 1244.

    Article  CAS  Google Scholar 

  8. Navarro, A., Cañadas, I., Martinez, D., Rodriguez, J., and Mendoza, J.L., Sol. Energy, 2009, vol. 83, p. 1405.

    Article  CAS  Google Scholar 

  9. Navarro, A., Cardellach, E., and Corbella, M., J. Geochem. Explor., 2009, vol. 101, p. 236.

    Article  CAS  Google Scholar 

  10. Raposo, C., Windmöller, C.C., and Durão, W.A., Waste Manage., 2003, vol. 23, p. 879.

    Article  CAS  Google Scholar 

  11. Azzaria, L.M. and Aftabi, A., Water Air Soil Pollut., 1991, vol. 56, p. 203.

    Article  CAS  Google Scholar 

  12. Liu, G., Cabrera, J., Allen, M., and Cai, Y., Sci. Total. Environ., 2006, vol. 369, p. 384.

    Article  CAS  Google Scholar 

  13. Sladek, C. and Gustin, M.S., Appl. Geochem., 2003, vol. 18, p. 567.

    Article  CAS  Google Scholar 

  14. Lechler, P.J., Miller, J.R., Hsu, L.C., and Desilets, M.O., J. Geochem. Explor., 1997, vol. 58, p. 259.

    Article  CAS  Google Scholar 

  15. Panyametheekul, S., Environ. Geochem. Health, 2004, vol. 26, p. 51.

    Article  CAS  Google Scholar 

  16. Palmieri, H.E.L., Nalini, H.A., Leonel, L.V., Windmöller, C.C., Santos, R.C., and Brito, W., Sci. Total. Environ., 2006, vol. 368, p. 69.

    Article  CAS  Google Scholar 

  17. Windmöller, C.C., Wilken, R.D., and Jardim, W.F., Water Air Soil Pollut., 1996, vol. 89, p. 399.

    Article  Google Scholar 

  18. Biester, H. and Scholz, C., Environ. Sci. Technol., 1997, vol. 31, p. 233.

    Article  CAS  Google Scholar 

  19. Bollen, A., Wenke, A., and Biester, H., Water Res., 2008, vol. 42, p. 91.

    Article  CAS  Google Scholar 

  20. Navarro, A., Biester, H., Mendoza, J.L., and Cardellach, E., Environ. Geol., 2006, vol. 49, p. 1089.

    Article  CAS  Google Scholar 

  21. Bombach, G., Bombach, K., and Klemm, W., Fr. J. Anal. Chem., 1994, vol. 350, p. 18.

    Article  CAS  Google Scholar 

  22. Feng, X., Lu, J.Y., Grègoire, D.C., Hao, Y., Banic, C.M., and Schroeder, W.H., Anal. Bioanal. Chem., 2004, vol. 380, p. 683.

    Article  CAS  Google Scholar 

  23. Hojdová, M., Navrátil, T., Rohovec, J., Penízek, V., and Grygar, T., Water Air Soil Pollut., 2009, vol. 200, p. 89.

    Article  Google Scholar 

  24. Coufalík, P., Krásenský, P., Dosbaba, M., and Komárek, J., Cent. Eur. J. Chem., 2012, vol. 10, p. 1565.

    Article  Google Scholar 

  25. Biester, H. and Nehrke, G., Fr. J. Anal. Chem., 1997, vol. 358, p. 446.

    Article  CAS  Google Scholar 

  26. Valle, C.M., Santana, G.P., Augusti, R., Filho, F.E., and Windmöller, C.C., Chemosphere, 2005, vol. 58, p. 779.

    Article  Google Scholar 

  27. Hojdová, M., Navrátil, T., and Rohovec, J., Bull. Environ. Contam. Toxicol., 2008, vol. 80, p. 237.

    Article  Google Scholar 

  28. Biester, H. and Zimmer, H., Environ. Sci. Technol., 1998, vol. 32, p. 2755.

    Article  CAS  Google Scholar 

  29. Biester, H., Gosar, M., and Müller, G., J. Geochem. Explor., 1999, vol. 65, p. 195.

    Article  CAS  Google Scholar 

  30. Biester, H., Gosar, M., and Covelli, S., Environ. Sci. Technol., 2000, vol. 34, p. 3330.

    Article  CAS  Google Scholar 

  31. Wallschläger, D., Desai, M.V.M., Spengler, M., Windmöler, C.C., and Wilken, R.D., J. Environ. Qual., 1998, vol. 27, no. 5, p. 1044.

    Article  Google Scholar 

  32. Arias, M., Barral, M.T., Silva-Carvalhal, J., Mejuto, J.C., and Rubinos, D., Clay Miner., 2004, vol. 39, p. 35.

    Article  CAS  Google Scholar 

  33. Gosar, M., Šajn, R., and Biester, H., Sci. Total. Environ., 2006, vol. 369, p. 150.

    Article  CAS  Google Scholar 

  34. Biester, H., Müller, G., and Schöler, H.F., Sci. Total. Environ., 2002, vol. 284, p. 191.

    Article  CAS  Google Scholar 

  35. Valle, C.M., Santana, G.P., and Windmöller, C.C., Chemosphere, 2006, vol. 65, p. 1966.

    Article  Google Scholar 

  36. Teršič, T., Gosar, M., and Biester, H., J. Geochem. Explor., 2011, vol. 110, p. 136.

    Article  Google Scholar 

  37. Nóvoa-Muñoz, J.C., Pontevedra-Pombal, X., Martínez-Cortizas, A., and Gayoso, E.G.R., Sci. Tot. Environ., 2008, vol. 394, p. 303.

    Article  Google Scholar 

  38. Bouffard, A. and Amyot, M., Chemosphere, 2009, vol. 74, p. 1098.

    Article  CAS  Google Scholar 

  39. Revis, N.W., Osborne, T.R., Holdsworth, G., and Hadden, C., Water Air Soil Pollut., 1989, vol. 45, p. 105.

    CAS  Google Scholar 

  40. Gray, J.E., Hines, M.E., and Biester, H., Appl. Geochem., 2006, vol. 21, p. 1940.

    Article  CAS  Google Scholar 

  41. Bollen, A. and Biester, H., Water Air Soil Pollut., 2011, vol. 219, p. 175.

    Article  CAS  Google Scholar 

  42. Martínez-Cortizas, A., Pontevedra-Pombal, X., García-Rodeja, E., Nóvoa-Muñoz, J.C., and Shotyk, W., Science, 1999, vol. 284, p. 939.

    Article  Google Scholar 

  43. Piani, R., Covelli, S., and Biester, H., Appl. Geochem., 2005, vol. 20, p. 1546.

    Article  CAS  Google Scholar 

  44. Higueras, P., Oyarzun, R., Biester, H., Lillo, J., and Lorenzo, S., J. Geochem. Explor., 2003, vol. 80, p. 95.

    Article  CAS  Google Scholar 

  45. Teršič, T., Gosar, M., and Biester, H., Appl. Geochem., 2011, vol. 26, p. 1867.

    Article  Google Scholar 

  46. Tauson, V.L., Gelety, V.F., and Men’shikov, V.I., Global and regional mercury cycles: Sources, fluxes and mass balances. Dordrecht, Kluwer, Nato A. S. I. 2, 1996, vol. 21, p. 441.

    Article  CAS  Google Scholar 

  47. Tauson, V.L., Parkhomenko, I.Y., Men’shikov, V.I., and Nepomnyashchikh, K.V., Russ. Geol. Geophys., 2002, vol. 43, p. 171.

    Google Scholar 

  48. Tauson, V.L., Parkhomenko, I.Y., Babkin, D.N., Men’shikov, V.I., and Lustenber, E.E., Eur. J. Mineral., 2005, vol. 17, p. 599.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Komárek.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coufalík, P., Komárek, J. The use of thermal desorption in the speciation analysis of mercury in soil, sediments and tailings. J Anal Chem 69, 1123–1129 (2014). https://doi.org/10.1134/S1061934814120028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934814120028

Keywords

Navigation