Journal of Analytical Chemistry

, Volume 69, Issue 5, pp 474–479 | Cite as

Determination of fluoride ions in urinary stones by ion chromatography

  • E. V. Yusenko
  • F. P. Kapsargin
  • P. N. Nesterenko


A method of the ion chromatographic determination of fluoride ions in urinary stones has been developed. Sample preparation of solid mineral-organic samples includes dissolution in concentrated hydrochloric acid, dilution with deionized water, and the elimination of excess calcium and magnesium cations by adding a KU-2 sulfo cation exchanger in the H-form to samples and filtration through a membrane filter. Anions were separated on a Shim-pack IC-AIS anion-exchange column (100 × 4.6 mm) with elution with a mixture of 2.0 mM phthalic acid and 1.2 mM sodium hydroxide (pH 3.5). The linearity range of the fluoride ions in the obtained solutions of urinary stones with conductometric detection was 0.01–300 mg/L, the limit of detection calculated by the 3s-test was 0.004 mg/L. The quantitative determination of fluoride ions in 20 samples of urinary stones was performed; in 80% of cases the presence of fluorides in the stones at a level from 0.01 to 4 mg/g of the stone was detected. The average concentration of the fluoride ions was 0.3 mg/g of stone. For 20% of the samples an elevated concentration of fluoride ions compared to the average one was found.


ion chromatography fluoride ions urinary stone disease urinary stones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alyaev, Yu.G., Mochekamennaya bolezn’. Sovremennye metody diagnostiki i lecheniya (Kidney Stone Disease. Contemporary Methods of Diagnostics and Treatment), Moscow: GEOTAR-Media, 2010.Google Scholar
  2. 2.
    Ramello, A., Vitale, C., and Marangella, D., J. Nephrol., 2000, vol. 13, no. 3, p. 45.Google Scholar
  3. 3.
    Lopatkin, N.A. and Dzeranov, N.K., 15-Year Expertise in Using DLT in the Treatment of the Kidney Stone Disease, Proc. Plenum of Governmental Board of the Russian Urology Society, Moscow, 2003.Google Scholar
  4. 4.
    Avtsyni, A.P., Zhavoronkov, A.A., Rish, M.A, and Strochkova, L.S., Mikroelementozy cheloveka (Human Microelementosis), Moscow: Meditsina, 1991.Google Scholar
  5. 5.
    Antonova, M.O., Kuz’micheva, G.M., and Rudenko, V.I., Khim. Inter. Ist.. Razvit., 2011, no. 4, p. 437.Google Scholar
  6. 6.
    Gracia-Garcia, S., Millan-Rodriguez, F., and Rousaud-Baron, F., Actas Urol. Esp., 2011, vol. 35, no. 6, p. 354.CrossRefGoogle Scholar
  7. 7.
    Kuz’micheva, G.M., Antonova, M.O., Rudenko, V.I., Shchichko, A.S., Ryazanov, V.V., and Natykan, A.A., Fundament. Issled., 2012, no. 9, p. 193.Google Scholar
  8. 8.
    Basiri, A., Taheri, M., and Taheri, F., Urology J., 2012, vol. 9, no. 2, p. 445.Google Scholar
  9. 9.
    Yusenko, E.V., Yusenko, K.V., Korolkov, I.V., Shubin, A.A., Kapsargin, F.P., Efremov, A.A., and Yusenko, M.V., Cent. Eur. J. Chem., 2013, vol. 11, no 12, p. 2107.CrossRefGoogle Scholar
  10. 10.
    Nigmatulina, E.N., Sokol, E.V., Maksimova, N.V., Chiklintsev, A.Yu., and Luk’yanov, Ya.L., Khim. Interesah Ustoich. Razvit., 2004, no. 12, p. 67.Google Scholar
  11. 11.
    Afzal, M., Iqbal, M., and Ahmad, H., J. Therm. Anal., 1992, vol. 38, p. 1671.CrossRefGoogle Scholar
  12. 12.
    Jarolimova, Z., Lubal, P., and Kanicky, V., Talanta, 2012, vol. 98, p. 49.CrossRefGoogle Scholar
  13. 13.
    Rathee, N., Garg, P., and Pundir, C.S., Ind. J. Clin. Biochem., 2004, vol. 19, no. 2, p. 100.CrossRefGoogle Scholar
  14. 14.
    Sathish, R.S., Ranjit, B., Ganesh, K.M., Nageswara Rao, G., and Janardhana, C., Curr. Sci. India, 2008, vol. 94, no. 1, p. 104.Google Scholar
  15. 15.
    Shpigun, O.A. and Zolotov, Yu.A., Ionnaya khromatografiya i primenenie v analize vod (Ion Chromatography and Use in Water Analysis), Moscow: Izd. Mosc. Gos. Univ., 1990.Google Scholar
  16. 16.
    Yusenko, E.V., Kalyakina, O.P., Polyntseva, E.A., and Kalyakin, S.N., Pol. J. Food Nutrition Sci., 2011, vol. 61, no. 1, p. 52.Google Scholar
  17. 17.
    Nesterenko, P.N., Pirogov, A.V., and Shpigun, O.A., Zavod. Lab., Diagn. Mater., 2003, vol. 69, no. 3, p. 10.Google Scholar
  18. 18.
    Yusenko, E.V., Kalyakina, O.P., and Kalyakin, S.N., Abstracts of Papers, 16th Eur. Conf. Analytical Chemistry EUROanalysis 2011 Challenges in Modern Analytical Chemistry, Belgrad, 2011, CH38.Google Scholar
  19. 19.
    Kalyakina, O.P. and Dolgonosov, A.M., J. Anal. Chem., 2003, vol. 58, no. 10, p. 951.CrossRefGoogle Scholar
  20. 20.
    Geng, X., Zhang, S., Wang, Q., and Zhao, Z., J. Chromatogr., A, 2008, vol. 1192, no. 1, p. 187.CrossRefGoogle Scholar
  21. 21.
    Jackson, P.E., Trend. Anal. Chem., 2001, vol. 20, nos. 6–7, p. 320.CrossRefGoogle Scholar
  22. 22.
    Yusenko, E.V., Lyzhova, A.I., Polyntseva, E.A., and Kalyakina, O.P., Nauch. Praktich. Zh. Med. Univ., 2012, no. 3, p. 25.Google Scholar
  23. 23.
    Smith, C., Curr. Opin. Nephrol. Hyperten., 1998, vol. 7, p. 703.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. V. Yusenko
    • 1
  • F. P. Kapsargin
    • 2
  • P. N. Nesterenko
    • 3
  1. 1.Institute of Non-Ferrous Metals and Materials ScienceSiberian Federal UniversityKrasnoyarskRussia
  2. 2.Krasnoyarsk State Medical UniversityKrasnoyarskRussia
  3. 3.UTAS School of ChemistryUniversity of Tasmania. Australian Centre for Research on Separation ScienceHobartAustralia

Personalised recommendations