Journal of Analytical Chemistry

, Volume 68, Issue 13, pp 1111–1114 | Cite as

Three-dimensional ion mass chromatograms of oil hydrocarbon and heteroatomic compound types

Articles
  • 47 Downloads

Abstract

The type composition of oil and oil products is usually determined by either the summation of all individuals of this compound type found from GC or GC/MS data or using appropriate generalized analytical features specific for a compound type as a whole. The specific representation of mass spectra of a complex mixture as a table of 14 homological series allows the analyst to visualize characteristic ion clusters specific for the compound types. These ion clusters form a “type mass spectrum” for each compound type. In the mass chromatograms of ions of a homologous ion series, these ion clusters form peculiar three-dimensional chromatographic peaks, whose width along the retention time axis corresponds to the isomer distribution for the homologue, molecular mass distribution (if molecular ions are considered), or structural features of the system of fused rings (for fragment ions) and “volume,” the concentration of the compound type. Three-dimensional chromatographic peaks for compound types are similar to usual peaks for individual compounds in ion mass chromatograms.

Keywords

GC/MS oil oil products type composition three-dimensional ion mass chromatograms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blomberg, J., Schoenmakers, P.J., and Brinkman, U.A.Th., J. Chromatogr., A, 2002, vol. 972, no. 2, p. 137.CrossRefGoogle Scholar
  2. 2.
    Phillips, J.B. and Beens, J., J. Chromatogr., A, 1999, vol. 856, nos. 1–2, p. 331.CrossRefGoogle Scholar
  3. 3.
    Fisher, I.P. and Fischer, P., Talanta, 1974, vol. 21, no. 8, p. 867.CrossRefGoogle Scholar
  4. 4.
    Teeter, R.M., Mass Spectrom. Rev., 1985, vol. 4, no. 1, p. 123.CrossRefGoogle Scholar
  5. 5.
    Marshall, A.G. and Rodgers, R.P., Acc. Chem. Res., 2004, vol. 37, no. 1, p. 53.CrossRefGoogle Scholar
  6. 6.
    Hood, A., O’Neil, M.J., Advances in Mass Spectrometry, AMSPA, Waldron, 1959.Google Scholar
  7. 7.
    Polyakova, A.A., Molekulyarnyi mass-spektral’nyi analiz neftei (Molecular Mass Spectrometry for Petroleum Analysis), Moscow: Nedra, 1973.Google Scholar
  8. 8.
    Brodskii, E.S., Lukashenko, I.M., Volkov, Yu.A., Gol’berg, Yu.M., and Lebedevskaya, V.G., Zh. Anal. Khim., 1973, vol. 28, no. 11, p. 2262.Google Scholar
  9. 9.
    Robinson, C.J., Anal. Chem., 1971, vol. 43, no. 11, p. 1425.CrossRefGoogle Scholar
  10. 10.
    Brodskii, E.S. and Gol’berg, Yu.M., Zh. Anal. Khim., 1976, vol. 31, no. 3, pp. 17.Google Scholar
  11. 11.
    Brodskii, E.S., Mass Spectrometry Analysis of Hydrocarbon and Heteroatomic Compounds in Petroleum, in Metody issledovaniya sostava organicheskikh soedinenii nefti i bitumoidov (Investigation Techniques for Organic Compounds of Petroleum and Bitumen), Moscow: Nauka, 1985.Google Scholar
  12. 12.
    Brodskii, E.S., Zh. Anal. Khim., 1974, vol. 29, no. 3, p. 559.Google Scholar
  13. 13.
    Brodskii, E.S., Lukashenko, I.M., Gol’berg, Yu.M., and Lebedevskaya, V.G., Zh. Anal. Khim., 1974, vol. 29, no. 10, p. 2026.Google Scholar
  14. 14.
    Zenkevich, I.G., Osobennosti ustanovleniya struktury organicheskikh soedinenii sovremennymi khromatomassspektral’nymi metodami identifikatsii (Pathways to Structure Elucidation of Organic Substances by Contemporary Chromatography and Spectrometry Identification Methods), Moscow: Nauka, 2003.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations