Skip to main content

Algorithm of object identification in qualitative chemical analysis based on fuzzy similarity criteria

Abstract

An identification algorithm in qualitative chemical analysis is proposed based on the application of fuzzy (using the fuzzy set theory) similarity criteria. Examples of algorithm application to the identification of some objects are given; the stability of conclusions about the identification/nonidentification of objects to certain drawbacks is demonstrated.

This is a preview of subscription content, access via your institution.

References

  1. Milman, B.L., Trend. Anal. Chem., 2005, vol. 24, no. 6, p. 493.

    Article  CAS  Google Scholar 

  2. Cardenas, S. and Valcarcel, M., Trend. Anal. Chem., 2005, vol. 24, no. 6, p. 477.

    Article  CAS  Google Scholar 

  3. Vershinin, V.I., Derendyaev, B.G., and Lebedev, K.S., Komp’yuternaya identifikatsiya organicheskikh soedinenii (Computational Identification of Organic Compounds), Moscow: Akademkniga, 2002.

    Google Scholar 

  4. Vlasov, Yu., Legin, A., Rudnitskaya, A., Di Natale, C., and D’Amico, A., Pure Appl. Chem., 2005, vol. 11, p. 1965.

    Article  Google Scholar 

  5. Vershinin, V.I., Topchii, V.A., and Medvedovskaya, I.I., J. Anal. Chem., 2001, vol. 56, no. 4, p. 324.

    Article  CAS  Google Scholar 

  6. Sokolova, O.V., Il’icheva, N.B., and Vershinin, V.I., Analitika i kontrol’, 2000, vol. 4, p. 363.

    Google Scholar 

  7. Vershinin, V.I., J. Anal. Chem., 2000, vol. 55, no. 5, p. 417.

    Article  CAS  Google Scholar 

  8. Oliveri, P., Baldo, M.A., Daniele, S., and Forina, M., Anal. Bioanal. Chem., 2009, vol. 395, p. 1135.

    Article  CAS  Google Scholar 

  9. Cotte, J.F., Casabianca, H., Chardon, S., Lheritier, J., and Grenier-Loustalot, M.F., Anal. Bioanal. Chem., 2004, vol. 380, p. 698.

    Article  CAS  Google Scholar 

  10. Boffo, E.F., Tavares, L.A., Ferreira, M.M.C., and Ferreira, A.G., LWT Food Sci. Technol., 2009, vol. 42, no. 9, p. 1455.

    Article  CAS  Google Scholar 

  11. Bellorini, S., Strathmann, S., Baeten, V., Fumiere, O., Berben, G., Tirendi, S., and von Holst, C., Anal. Bioanal. Chem., 2005, vol. 382, p. 1073.

    Article  CAS  Google Scholar 

  12. Li, H., Takahashi, Y., Kumagai, M., Fujiwara, K., Kikuchi, R., Yoshimura, N., Amano, T., and Ogawa, N., J. Near Infrared Spectrosc., 2009, vol. 17, no. 2, p. 69.

    Article  Google Scholar 

  13. Shin, Y.S., Bang, K.H., In, D.S., Kim, O.T., Hyun, D.Y., Ahn, I.O., Bon, C.K., and Choi, H.K., Arch. Pharm. Res., 2007, vol. 30, no. 12, p. 1625.

    Article  CAS  Google Scholar 

  14. Cuadrado, M., Luque de Castro, M.D., and Gomez Nieto, M.A., Anal. Bioanal. Chem, 2005, vol. 381, p. 953.

    Article  Google Scholar 

  15. Saito, S., Hirokawa, T., and Horimoto, K., J. Chem. Inf. Model, 2011, vol. 51, p. 61.

    Article  CAS  Google Scholar 

  16. Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, Ellison, S.L.R., Rosslein, M., and Williams, A. Eds., Eurachem, 2000, 2nd Ed.

    Google Scholar 

  17. Mil’man, B.L. and Konopel’ko, L.A., J. Anal. Chem., 2004, vol. 59, no. 12, p. 1128.

    Article  Google Scholar 

  18. Bandemer, H. and Otto, M., Microchim. Acta, 1986, vol. 89, p. 93.

    Article  Google Scholar 

  19. Nazarenko, A.Yu., Sukhan, V.V., and Nazarenko, N.A., Zavod. Lab., 1991, vol. 57, no. 10, p. 63.

    Google Scholar 

  20. Linusson, A., Wold, S., and Norden, B., Chemom. Intell. Lab. Sys., 1998, vol. 44, p. 213.

    Article  CAS  Google Scholar 

  21. Barbieri, P., Adami, G., Favretto, A., Lutman, A., Avoscan, W., and Reisenhofer, E., Anal. Chim. Acta, 2001, vol. 440, no. 2, p. 161.

    Article  CAS  Google Scholar 

  22. Sarbu, C. and Pop, H.F., Talanta, 2005, vol. 65, p. 1215.

    Article  CAS  Google Scholar 

  23. Sarbu, C. and Pop, H.F., Chemosphere, 2000, vol. 40, p. 513.

    Article  CAS  Google Scholar 

  24. Iliev, B., Lindquist, M., Robertsson, L., and Wide, P., Fuzzy Sets and Systems, 2006, vol. 157, p. 1155.

    Article  Google Scholar 

  25. Musee, N., Lorenzen, L., and Aldrich, C., J. Hazard. Mater., 2008, vol. 154, p. 1040.

    Article  CAS  Google Scholar 

  26. Kholin, Yu.V., Nikitina, N.A., Panteleimonov, A.V., Reshetnyak, E.A., Bugaevskii, A.A., and Loginova, L.P., Metrologicheskie kharakteristiki metodik obnaruzheniya s binarnym otklikom (Metrological Characteristics of Binary Response Techniques), Kharkov: Timchenko, 2008.

    Google Scholar 

  27. Huber, P.J., Robust statistics, New York: Wiley, 1981.

    Book  Google Scholar 

  28. Pop, H.F. and Sârbu, C., Anal. Chem., 1996, vol. 771, no. 5.

    Google Scholar 

  29. Sarbu, C. and Pop, H.F., Talanta, 2001, vol. 54, p. 125.

    Article  CAS  Google Scholar 

  30. Changa, Y.-H.O. and Ayyub, B.M., Fuzzy Sets and Systems, 2001, vol. 119, p. 187.

    Article  Google Scholar 

  31. Nasrabadi, E., Mehdi, Hashemi S., and Mehdi, Ghatee A.N., Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems, 2007, vol. 15, no. 4, p. 441.

    Article  Google Scholar 

  32. Zadeh, L.A., Fuzzy Sets and Their Application to Pattern Classification and Clustering Analysis. Classification and Clustering, New York: Academic Press, 1977.

    Google Scholar 

  33. Orlovskii, S.A., Problemy prinyatiya reshenii pri nechetkoi iskhodnoi informatsii (Taking a Decision based on Fuzzy Underlying Data), Moscow: Nauka, 1981.

    Google Scholar 

  34. Conti, C., Galeazzi, R., Giorgini, E., and Tosi, G., J. Mol. Struct., 2005, p. 417.

    Google Scholar 

  35. Vuchkov, I., Boyadzhieva, L., and Solakov, E., Applied Linear Regression Analysis, Moscow: Finansy i Statistika, 1987.

    Google Scholar 

  36. Bol’shev, L.N. and Smirnov, N.V., Tablitsy matematicheskoi statistiki (Tables of Mathematical Statistics), Moscow: Nauka, 1983.

    Google Scholar 

  37. Wülfert, F., Kok, W.Th., and Smilde, A.K., Anal. Chem., 1998, vol. 70, no. 9, p. 1761.

    Article  Google Scholar 

  38. www.models.life.ku.dk/datasets. Accessed April, 06, 2013.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Panteleimonov, Yu.V. Kholin, 2013, published in Zhurnal Analiticheskoi Khimii, 2013, Vol. 68, No. 11, pp. 1056–1062.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Panteleimonov, A.V., Kholin, Y.V. Algorithm of object identification in qualitative chemical analysis based on fuzzy similarity criteria. J Anal Chem 68, 942–948 (2013). https://doi.org/10.1134/S1061934813110099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934813110099

Keywords

  • qualitative chemical analysis
  • identification
  • fuzzy sets theory
  • similarity criteria